在深度学习中接受的游戏大小和对象大小

时间:2018-05-03 06:34:39

标签: deep-learning caffe conv-neural-network

我可以为VGGNet计算500 x 500输入图像的感受野大小。

感受野大小如下。

Layer Name = conv1, Output size = 500, Stride =   1, RF size =   3
Layer Name = relu1_1, Output size = 500, Stride =   1, RF size =   3
Layer Name = conv1_2, Output size = 500, Stride =   1, RF size =   5
Layer Name = relu1_2, Output size = 500, Stride =   1, RF size =   5
Layer Name = pool1, Output size = 250, Stride =   2, RF size =   6
Layer Name = conv2_1, Output size = 250, Stride =   2, RF size =  10
Layer Name = relu2_1, Output size = 250, Stride =   2, RF size =  10
Layer Name = conv2_2, Output size = 250, Stride =   2, RF size =  14
Layer Name = relu2_2, Output size = 250, Stride =   2, RF size =  14
Layer Name = pool2, Output size = 125, Stride =   4, RF size =  16
Layer Name = conv3_1, Output size = 125, Stride =   4, RF size =  24
Layer Name = relu3_1, Output size = 125, Stride =   4, RF size =  24
Layer Name = conv3_2, Output size = 125, Stride =   4, RF size =  32
Layer Name = relu3_2, Output size = 125, Stride =   4, RF size =  32
Layer Name = conv3_3, Output size = 125, Stride =   4, RF size =  40
Layer Name = relu3_3, Output size = 125, Stride =   4, RF size =  40
Layer Name = pool3, Output size =  62, Stride =   8, RF size =  44
Layer Name = conv4_1, Output size =  62, Stride =   8, RF size =  60
Layer Name = relu4_1, Output size =  62, Stride =   8, RF size =  60
Layer Name = conv4_2, Output size =  62, Stride =   8, RF size =  76
Layer Name = relu4_2, Output size =  62, Stride =   8, RF size =  76
Layer Name = conv4_3, Output size =  62, Stride =   8, RF size =  92
Layer Name = relu4_3, Output size =  62, Stride =   8, RF size =  92
Layer Name = pool4, Output size =  31, Stride =  16, RF size = 100
Layer Name = conv5_1, Output size =  31, Stride =  16, RF size = 132
Layer Name = relu5_1, Output size =  31, Stride =  16, RF size = 132
Layer Name = conv5_2, Output size =  31, Stride =  16, RF size = 164
Layer Name = relu5_2, Output size =  31, Stride =  16, RF size = 164
Layer Name = conv5_3, Output size =  31, Stride =  16, RF size = 196
Layer Name = relu5_3, Output size =  31, Stride =  16, RF size = 196

我只看到conv5_3。

例如,如果我的对象大小为150 x 150,而我的图像大小为500 x 500。

我可以这么说,从conv1到conv4_2的早期图层的特征图仅包含我的对象的部分特征,从conv5_2到conv5_3,它们具有几乎整个对象的特征。

我的考虑是否正确?

但是在conv5_3,我的output_size只有31 x 31,所以我无法看到它如何表示图像中的整个对象,但该conv5_3图层中的每个像素代表原始500 x的196 x 196大小500张图片。

我的考虑是否正确?

0 个答案:

没有答案