答案 0 :(得分:2)
迅速相当于@Andreas的答案:
func destinationPoint(latitude: Double, longitude: Double, bearing: Double, dist: Double) -> CLLocationCoordinate2D {
let lat2 = asin(sin(latitude) * cos(dist) + cos(latitude) * sin(dist) * cos(bearing))
var lon2 = longitude + atan2(sin(bearing) * sin(dist) * cos(latitude),cos(dist) - sin(latitude) * sin(lat2))
lon2 = fmod(lon2 + 3 * .pi, 2 * .pi) - .pi // normalise to -180..+180º
return CLLocationCoordinate2D(latitude: lat2 * (180.0 / .pi), longitude: lon2 * (180.0 / .pi))
}
let latRadian = coordinate.latitude * .pi / 180
let lngRadian = coordinate.longitude * .pi / 180
let distance = (radius / 1000) / 6371 // km
let n = 24
let coordinates = stride(from: 0.0, to: 360.0, by: Double(360 / n)).map {
destinationPoint(latitude: latRadian, longitude: lngRadian, bearing: $0 * .pi / 180, dist: distance)
}
答案 1 :(得分:1)
您可以使用Great-circle_distance计算来获得积分。
我首先从所需的中心点计算轴承,然后将它们循环并将它们传递给函数。
function destinationPoint($lat, $lng, $brng, $dist) {
$rad = 6371; // earths mean radius
$dist = $dist/$rad; // convert dist to angular distance in radians
$brng = deg2rad($brng); // conver to radians
$lat1 = deg2rad($lat);
$lon1 = deg2rad($lng);
$lat2 = asin(sin($lat1)*cos($dist) + cos($lat1)*sin($dist)*cos($brng) );
$lon2 = $lon1 + atan2(sin($brng)*sin($dist)*cos($lat1),cos($dist)-sin($lat1)*sin($lat2));
$lon2 = fmod($lon2 + 3*M_PI, 2*M_PI) - M_PI; // normalise to -180..+180º
$lat2 = rad2deg($lat2);
$lon2 = rad2deg($lon2);
echo "lat = ".$lat2."\n";
echo "lon = ".$lon2."\n\n";
}
$lat = 0;
$lng = 0;
$dist = 1; // km
$n = 12;
$bearings = range(0, 360-(360/$n) , 360/$n); // create array of all bearings needed from $lat/$lng
foreach($bearings as $brng){
echo $brng ."\n";
destinationPoint($lat, $lng, $brng, $dist);
}
在理论中,根据您需要的准确程度,您只需要使用该函数计算一半的值,然后您应该能够通过基本计算来计算另一半。 但如果距离很大(不知道究竟是什么意思)它可能会产生影响。