市场分析项目 - 加密货币

时间:2018-05-01 13:12:49

标签: r analysis cryptocurrency

+#I just started to code for some cryptocurrencies analysis. But I just encounterd an issue with the code.
    _____________________________________________________________________________

        library(magrittr)
        library(dplyr)
        library(tidyverse)
        library(crypto)
        library(lubridate)
        library(xts)
        library(quantmod)
        library(tidyr)

        df <- getCoins(limit = 50)

        yourfunction <- function(df, frequency = NULL) {
          freq        <- frequency
          df$date     <- lubridate::round_date(df$date, freq)
          data        <-
            df %>% dplyr::group_by(date, slug, symbol, name, ranknow) %>%
            dplyr::summarise(
              open   = dplyr::first(open),
              high   = max(high),
              low    = min(low),
              close  = dplyr::last(close),
              volume = sum(volume),
              market = dplyr::last(market))
          data$volume <- round(data$volume, digits = 0)
          data$market <- round(data$market, digits = 0)
          data        <- as.data.frame(data)
          results <- xts::xts(data[, 2:ncol(data)], as.POSIXct(data[, 1], format =
                                                                 "%d.%m.%Y %H:%M:%S"))
          return(results)
        }

        #### IF NO ERRORS IN ABOVE RUN THESE INDIVIDUALLY------
week_xts  <- yourfunction(df, frequency = "week")
str(week_xts)

as.tbl(week_xts) %>%
  select(date, slug, open) %>%
  spread(slug, open) %>%
  tail()

#### IF NO ERRORS IN ABOVE RUN THESE INDIVIDUALLY------
month_xts <- yourfunction(df, frequency = "month")
str(month_xts)

as.tbl(month_xts) %>%
  select(date, slug, open) %>%
  spread(slug, open) %>%
  tail()
########################



#Making daily, weekly and monthly open for ten biggest coins

daily_open <- spread(df[,c(1,4,6)],slug,open)
weekly_open <- spread(week_xts[,c(1, 2, 6)],slug,open)
monthly_open <- spread(month_xts[,c(1, 2, 6)],slug,open)

ten_biggest <- c(list_of_coins[1:10,"slug"])

daily_open <- daily_open[,c("date",ten_biggest)]
weekly_open <- weekly_open[,c("date",ten_biggest)]
monthly_open <- monthly_open[,c("date",ten_biggest)]


#Making daily, weekly and monthly high for ten biggest coins

daily_high <- spread(df[,c(1,4,7)],slug,high)
weekly_high <- spread(week_xts[,c(1,2,7)],slug,high)
monthly_high <- spread(month_xts[,c(1,2,7)],slug,high)

daily_high <- daily_high[,c("date",ten_biggest)]
weekly_high <- weekly_high[,c("date",ten_biggest)]
monthly_high <- monthly_high[,c("date",ten_biggest)]

#Making daily, weekly and monthly low for ten biggest coins

daily_low <- spread(df[,c(1,4,8)],slug,low)
weekly_low <- spread(week_xts[,c(1,2,8)],slug,low)
monthly_low <- spread(month_xts[,c(1,2,8)],slug,low)

daily_low <- daily_low[,c("date",ten_biggest)]
weekly_low <- weekly_low[,c("date",ten_biggest)]
monthly_low <- monthly_low[,c("date",ten_biggest)]

#Making daily, weekly and monthly close for ten biggest coins

daily_close <- spread(df[,c(1,4,9)],slug,close)
weekly_close <- spread(week_xts[,c(1,2,9)],slug,close)
monthly_close <- spread(month_xts[,c(1,2,9)],slug,close) 

daily_close <- daily_close[,c("date",ten_biggest)]
weekly_close <- weekly_close[,c("date",ten_biggest)]
monthly_close <- monthly_close[,c("date",ten_biggest)]


#Making daily, weekly and monthly volume for ten biggest coins

daily_volume <- spread(df[,c(1,4,10)],slug,volume)
weekly_volume <- spread(week_xts[,c(1,2,10)],slug,volume)
monthly_volume <- spread(month_xts[,c(1,2,10)],slug,volume)

daily_volume <- daily_volume[,c("date",ten_biggest)]
weekly_volume <- weekly_volume[,c("date",ten_biggest)]
monthly_volume <- monthly_volume[,c("date",ten_biggest)]


#Making daily,weekly and monthly market for ten biggest coins

daily_market <- spread(df[,c(1,4,11)],slug,market)
weekly_market <- spread(week_xts[,c(1,2,11)],slug,market)
monthly_market <- spread(month_xts[,c(1,2,11)],slug,market)

daily_market <- daily_market[,c("date",ten_biggest)]
weekly_market <- weekly_market[,c("date",ten_biggest)]
monthly_market <- monthly_market[,c("date",ten_biggest)]


#Doesn't work
weekly_open_returns <- periodReturn(weekly_open, period="daily", subset=NULL, type="arithmetic",leading="TRUE")
weekly_open_returns <- Return.calculate(weekly_open)

我想为每日,每月和每周频率的每种数据类型(开放,高,收盘,交易量,市场,close_ratio和价差)制作数据框。这些数据框的构造方式应使每列代表一种货币,行代表观察。但是,当我尝试使用每周和每月频率的扩展函数来执行此操作时,会出现错误。我该怎么办?

提前感谢您的帮助。祝你度过愉快的一天。

错误是:

    > weekly_open_returns <- periodReturn(weekly_open, period="daily", subset=NULL, type="arithmetic",leading="TRUE")
Error in try.xts(x) : 
  Error in as.POSIXlt.character(x, tz, ...) :   character string is not in a standard unambiguous format
> weekly_open_returns <- Return.calculate(weekly_open)
Error in checkData(prices, method = "xts") : 
  The data cannot be converted into a time series.  If you are trying to pass in names from a data object with one column, you should use the form 'data[rows, columns, drop = FALSE]'.  Rownames should have standard date formats, such as '1985-03-15'.

(来自评论:)

我想为每日,每月和每周频率的每种数据类型(开放,高,收盘,交易量,市场,close_ratio和价差)制作数据框。这些数据框的构造方式应使每列代表一种货币,行代表观察。但是,当我尝试使用每周和每月频率的扩展函数来执行此操作时,会出现错误。我该怎么办?提前感谢您的帮助。祝你愉快。 - MP PM 28分钟前

2 个答案:

答案 0 :(得分:0)

在测试代码之后,错误非常明确:tidyr::spread适用于tibbles,但你拥有的是类[1] "xts" "zoo"。此外,可能由于xts步骤,它全部为character,这意味着week_xts中的所有数字都是字符串。我看到您认为自己在使用daily_xts(后spread)时所做的工作,但大部分数据都是NA,因为大多数货币直到数据末期才会出现。这是故意的吗?

部分问题在于您使用xts:它不会返回data.frame,而是返回一个向量或matrix,如下所示:

str(week_xts)
# An 'xts' object on 2013-04-27 17:00:00/2018-04-28 17:00:00 containing:
#   Data: chr [1:4593, 1:10] "bitcoin" "litecoin" "bitcoin" "litecoin" "bitcoin" ...
#  - attr(*, "dimnames")=List of 2
#   ..$ : NULL
#   ..$ : chr [1:10] "slug" "symbol" "name" "ranknow" ...
#   Indexed by objects of class: [POSIXct,POSIXt] TZ: 
#   xts Attributes:  
#  NULL

这表示一切都是character。所以,如果你这样做

head(week_xts[,1:5])
#                     slug       symbol name       ranknow open          
# 2013-04-27 17:00:00 "bitcoin"  "BTC"  "Bitcoin"  " 1"    "  135.300000"
# 2013-04-27 17:00:00 "litecoin" "LTC"  "Litecoin" " 7"    "    4.300000"
# 2013-05-04 17:00:00 "bitcoin"  "BTC"  "Bitcoin"  " 1"    "  116.380000"
# 2013-05-04 17:00:00 "litecoin" "LTC"  "Litecoin" " 7"    "    3.780000"
# 2013-05-11 17:00:00 "bitcoin"  "BTC"  "Bitcoin"  " 1"    "  113.200000"
# 2013-05-11 17:00:00 "litecoin" "LTC"  "Litecoin" " 7"    "    3.400000"

你会看到你想要的数字实际上是字符串。

我建议yourfunction或许xts::xts不应该在你spread事之前做yourfunction <- function(df, frequency = NULL) { # ... return(data) } week_xts <- yourfunction(df, frequency = "week") str(week_xts) # 'data.frame': 4593 obs. of 11 variables: # $ date : Date, format: "2013-04-28" "2013-04-28" ... # $ slug : chr "bitcoin" "litecoin" "bitcoin" "litecoin" ... # $ symbol : chr "BTC" "LTC" "BTC" "LTC" ... # $ name : chr "Bitcoin" "Litecoin" "Bitcoin" "Litecoin" ... # $ ranknow: num 1 7 1 7 1 7 1 7 1 7 ... # $ open : num 135.3 4.3 116.38 3.78 113.2 ... # $ high : num 147.49 4.57 125.6 4.04 122 ... # $ low : num 107.72 3.52 79.1 2.4 103.5 ... # $ close : num 116.99 3.8 113.57 3.41 114.22 ... # $ volume : num 0 0 0 0 0 0 0 0 0 0 ... # $ market : num 1542820000 73901200 1219450000 57196300 1242760000 ... 。代替:

as.tbl(week_xts) %>%
  select(date, slug, open) %>%
  spread(slug, open) %>%
  tail()
# # A tibble: 6 x 51
#   date        `0x`  aelf aeternity `binance-coin` bitcoin `bitcoin-cash`
#   <date>     <dbl> <dbl>     <dbl>          <dbl>   <dbl>          <dbl>
# 1 2018-03-25 0.583 0.633      1.75           10.0   8939.          1033.
# 2 2018-04-01 0.635 0.625      1.64           11.7   7979.           862.
# 3 2018-04-08 0.521 0.519      1.43           12.2   6849.           649.
# 4 2018-04-15 0.597 0.895      1.47           12.4   6955.           666.
# 5 2018-04-22 0.923 1.11       1.86           12.3   8159.           891.
# 6 2018-04-29 1.01  1.02       2.3            13.4   8867.          1290.
# # ... with 44 more variables: `bitcoin-diamond` <dbl>, `bitcoin-gold` <dbl>,
# #   `bitcoin-private` <dbl>, bitshares <dbl>, `bytecoin-bcn` <dbl>,
# #   bytom <dbl>, cardano <dbl>, dash <dbl>, decred <dbl>, digixdao <dbl>,
# #   dogecoin <dbl>, eos <dbl>, ethereum <dbl>, `ethereum-classic` <dbl>,
# #   icon <dbl>, iota <dbl>, lisk <dbl>, litecoin <dbl>, loopring <dbl>,
# #   maker <dbl>, mixin <dbl>, monero <dbl>, nano <dbl>, nem <dbl>, neo <dbl>,
# #   omisego <dbl>, ontology <dbl>, populous <dbl>, qtum <dbl>, rchain <dbl>,
# #   ripple <dbl>, siacoin <dbl>, status <dbl>, steem <dbl>, stellar <dbl>,
# #   stratis <dbl>, tether <dbl>, tron <dbl>, vechain <dbl>, verge <dbl>,
# #   wanchain <dbl>, waves <dbl>, zcash <dbl>, zilliqa <dbl>

从那里:

tail

(我显示select(...)因为大多数货币的大部分早期日期都是空的。)

附注:我建议您使用week_xts[,c(1,5)]和列名而不是索引;您使用了匹配dateopen的{​​{1}},是的,但是如果不查看数据则不是很清楚。此外,通过跳过xts转换,现在c(1,2,6)可以捕获日期,slug和open。

我想知道这是否应该考虑使用xts::xts,尽管数据中包含slug,您仍可能将所有数字转换为character

最后一个日期的20个条目,如果其他人想要快速了解这个:

> dput(head(filter(df, date==tail(date,1)),n=20))
structure(list(slug = c("bitcoin", "ethereum", "ripple", "bitcoin-cash", 
"eos", "cardano", "litecoin", "stellar", "tron", "neo", "iota", 
"dash", "monero", "nem", "tether", "vechain", "ethereum-classic", 
"qtum", "omisego", "icon"), symbol = c("BTC", "ETH", "XRP", "BCH", 
"EOS", "ADA", "LTC", "XLM", "TRX", "NEO", "MIOTA", "DASH", "XMR", 
"XEM", "USDT", "VEN", "ETC", "QTUM", "OMG", "ICX"), name = c("Bitcoin", 
"Ethereum", "Ripple", "Bitcoin Cash", "EOS", "Cardano", "Litecoin", 
"Stellar", "TRON", "NEO", "IOTA", "Dash", "Monero", "NEM", "Tether", 
"VeChain", "Ethereum Classic", "Qtum", "OmiseGO", "ICON"), date = structure(c(17651, 
17651, 17651, 17651, 17651, 17651, 17651, 17651, 17651, 17651, 
17651, 17651, 17651, 17651, 17651, 17651, 17651, 17651, 17651, 
17651), class = "Date"), ranknow = c(1, 2, 3, 4, 5, 6, 7, 8, 
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20), open = c(9426.11, 
689.76, 0.871404, 1440.96, 21.64, 0.364297, 153.65, 0.458688, 
0.089656, 92.15, 2.04, 498.44, 256.35, 0.42658, 0.997553, 4.83, 
21.84, 23.15, 18.05, 4.69), high = c(9477.14, 694.44, 0.876788, 
1440.96, 21.64, 0.364297, 154.08, 0.460128, 0.101197, 94.76, 
2.05, 499.43, 259.07, 0.42658, 1.01, 4.83, 22.95, 25.6, 18.06, 
4.69), low = c(9166.81, 666.12, 0.831208, 1339.36, 16.86, 0.336625, 
147.87, 0.417446, 0.086102, 82.86, 1.94, 472.02, 239.08, 0.403889, 
0.992921, 4.37, 21.42, 22.12, 16.81, 4.26), close = c(9240.55, 
669.92, 0.837938, 1350.05, 17.58, 0.343318, 148.48, 0.424659, 
0.093777, 84.27, 1.96, 472.77, 242.46, 0.40888, 0.998919, 4.49, 
21.68, 22.64, 16.95, 4.34), volume = c(8673920000, 2853100000, 
575364000, 753114000, 4073370000, 298712000, 341397000, 81453300, 
1749640000, 377385000, 61762500, 118497000, 103574000, 25523800, 
4498440000, 109782000, 351049000, 414455000, 68967800, 94284100
), market = c(160302000000, 68376400000, 34112200000, 24642000000, 
17849100000, 9445160000, 8651810000, 8518430000, 5894710000, 
5990010000, 5676530000, 4006280000, 4096790000, 3839220000, 2411230000, 
2539730000, 2215850000, 2050300000, 1841910000, 1815430000), 
    close_ratio = c(0.2376, 0.1342, 0.1477, 0.1052, 0.1506, 0.2419, 
    0.0982, 0.169, 0.5084, 0.1185, 0.1818, 0.0274, 0.1691, 0.22, 
    0.3512, 0.2609, 0.1699, 0.1494, 0.112, 0.186), spread = c(310.33, 
    28.32, 0.05, 101.6, 4.78, 0.03, 6.21, 0.04, 0.02, 11.9, 0.11, 
    27.41, 19.99, 0.02, 0.02, 0.46, 1.53, 3.48, 1.25, 0.43)), .Names = c("slug", 
"symbol", "name", "date", "ranknow", "open", "high", "low", "close", 
"volume", "market", "close_ratio", "spread"), row.names = c(NA, 
20L), class = "data.frame")

答案 1 :(得分:0)

感谢您的宝贵意见。我编辑了代码(你可以在第一篇文章中找到新的代码),因为当我想要计算回报时,我还有另一个挑战。而且,如果有人会有一些提示,我会非常高兴。也许直到星期二,我将用退货计算解决我的问题。