关于零售商店,我有以下pandas交易数据集:
print(df)
product Date Assistant_name
product_1 2017-01-02 11:45:00 John
product_2 2017-01-02 11:45:00 John
product_3 2017-01-02 11:55:00 Mark
...
我想为市场购物篮分析创建以下数据集:
product Date Assistant_name Invoice_number
product_1 2017-01-02 11:45:00 John 1
product_2 2017-01-02 11:45:00 John 1
product_3 2017-01-02 11:55:00 Mark 2
...
简而言之,如果交易具有相同的Assistant_name和日期,我认为它确实会生成新的发票。
答案 0 :(得分:4)
最简单的是factorize
,其中列连接在一起:
df['Invoice'] = pd.factorize(df['Date'].astype(str) + df['Assistant_name'])[0] + 1
print (df)
product Date Assistant_name Invoice
0 product_1 2017-01-02 11:45:00 John 1
1 product_2 2017-01-02 11:45:00 John 1
2 product_3 2017-01-02 11:55:00 Mark 2
如果表现很重要,请使用pd.lib.fast_zip
:
df['Invoice']=pd.factorize(pd.lib.fast_zip([df.Date.values, df.Assistant_name.values]))[0]+1
<强>计时强>:
#[30000 rows x 3 columns]
df = pd.concat([df] * 10000, ignore_index=True)
In [178]: %%timeit
...: df['Invoice'] = list(zip(df['Date'], df['Assistant_name']))
...: df['Invoice'] = df['Invoice'].astype('category').cat.codes + 1
...:
9.16 ms ± 54.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [179]: %%timeit
...: df['Invoice'] = pd.factorize(df['Date'].astype(str) + df['Assistant_name'])[0] + 1
...:
11.2 ms ± 395 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [180]: %%timeit
...: df['Invoice'] = pd.factorize(pd.lib.fast_zip([df.Date.values, df.Assistant_name.values]))[0] + 1
...:
6.27 ms ± 93.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
答案 1 :(得分:1)
使用pandas
类别是一种方式:
df['Invoice'] = list(zip(df['Date'], df['Assistant_name']))
df['Invoice'] = df['Invoice'].astype('category').cat.codes + 1
# product Date Assistant_name Invoice
# product_1 2017-01-02 11:45:00 John 1
# product_2 2017-01-02 11:45:00 John 1
# product_3 2017-01-02 11:55:00 Mark 2
此方法的好处是您可以轻松检索映射字典:
dict(enumerate(df['Invoice'].astype('category').cat.categories, 1))
# {1: ('11:45:00', 'John'), 2: ('11:55:00', 'Mark')}