任何cuda调用的CudaErrorUnknown代码= 30

时间:2018-04-29 21:55:30

标签: c++ cmake cuda

我已经安装了cuda工具包,我可以毫无问题地运行示例。现在,我想在我的项目中使用cuda,在我的项目中我使用cmake。所以,为了证明我的问题,我创建了一个简单的例子。我有3个文件,我的主要文件是" teste.cpp",cuda文件" hello_world.cu"它的标题。我的主要任务是在hello_world.cu上调用函数,如下所示:

#include <iostream>
#include "hello_world.h"

using namespace std;

int main(int argc, char** argv)
{

    teste(argc, argv);  
    return 0;

}

我的hello_world.cu是&#34; clock&#34;的精确副本。样品。所以,看起来像这样:

// CUDA runtime
#include </usr/local/cuda-9.0/include/cuda_runtime.h>

// helper functions and utilities to work with CUDA
#include </usr/local/cuda-9.0/samples/common/inc/helper_functions.h>
#include </usr/local/cuda-9.0/samples/common/inc/helper_cuda.h>

#define NUM_BLOCKS    64
#define NUM_THREADS   256

__global__ static void timedReduction(const float *input, float *output, clock_t *timer)
{
    // __shared__ float shared[2 * blockDim.x];
    extern __shared__ float shared[];

    const int tid = threadIdx.x;
    const int bid = blockIdx.x;

    if (tid == 0) timer[bid] = clock();

    // Copy input.
    shared[tid] = input[tid];
    shared[tid + blockDim.x] = input[tid + blockDim.x];

    // Perform reduction to find minimum.
    for (int d = blockDim.x; d > 0; d /= 2)
    {
        __syncthreads();

        if (tid < d)
        {
            float f0 = shared[tid];
            float f1 = shared[tid + d];

            if (f1 < f0)
            {
                shared[tid] = f1;
            }
        }
    }

    // Write result.
    if (tid == 0) output[bid] = shared[0];

    __syncthreads();

    if (tid == 0) timer[bid+gridDim.x] = clock();
}

int teste(int argc, char** argv) {
  printf("CUDA Clock sample\n");

    // This will pick the best possible CUDA capable device
    int dev = findCudaDevice(argc, (const char **)argv);

    float *dinput = NULL;
    float *doutput = NULL;
    clock_t *dtimer = NULL;

    clock_t timer[NUM_BLOCKS * 2];
    float input[NUM_THREADS * 2];

    for (int i = 0; i < NUM_THREADS * 2; i++)
    {
        input[i] = (float)i;
    }

    checkCudaErrors(cudaMalloc((void **)&dinput, sizeof(float) * NUM_THREADS * 2));
    checkCudaErrors(cudaMalloc((void **)&dinput, sizeof(float) * NUM_THREADS * 2));
    checkCudaErrors(cudaMalloc((void **)&doutput, sizeof(float) * NUM_BLOCKS));
    checkCudaErrors(cudaMalloc((void **)&dtimer, sizeof(clock_t) * NUM_BLOCKS * 2));

    checkCudaErrors(cudaMemcpy(dinput, input, sizeof(float) * NUM_THREADS * 2, cudaMemcpyHostToDevice));

    timedReduction<<<NUM_BLOCKS, NUM_THREADS, sizeof(float) * 2 *NUM_THREADS>>>(dinput, doutput, dtimer);

    checkCudaErrors(cudaMemcpy(timer, dtimer, sizeof(clock_t) * NUM_BLOCKS * 2, cudaMemcpyDeviceToHost));

    checkCudaErrors(cudaFree(dinput));
    checkCudaErrors(cudaFree(doutput));
    checkCudaErrors(cudaFree(dtimer));

    long double avgElapsedClocks = 0;

    for (int i = 0; i < NUM_BLOCKS; i++)
    {
        avgElapsedClocks += (long double) (timer[i + NUM_BLOCKS] - timer[i]);
    }

    avgElapsedClocks = avgElapsedClocks/NUM_BLOCKS;
    printf("Average clocks/block = %Lf\n", avgElapsedClocks);

    return EXIT_SUCCESS;
}

我的CMakeLists.txt看起来像这样:

cmake_minimum_required(VERSION 2.8)
set(CUDA_HOST_COMPILER /usr/bin/g++-4.9)
find_package(CUDA QUIET REQUIRED)

# Pass options to NVCC
set(
    CUDA_NVCC_FLAGS
    ${CUDA_NVCC_FLAGS};
    -O3 -std=c++11 -g 
    )

# For compilation ...
# Specify target & source files to compile it from
cuda_add_executable(
    helloworld
    teste.cpp
    hello_world.cu
)

代码编译,当我运行它时,我得到这个输出:

CUDA Clock sample
GPU Device 0: "GeForce GTX 950M" with compute capability 5.0

CUDA error at /home/cesar/Documents/cuda_teste/hello_world.cu:69 code=30(cudaErrorUnknown) "cudaMalloc((void **)&dinput, sizeof(float) * NUM_THREADS * 2)" 

为什么我在这里使用cmake会收到此错误?如果我去示例目录并尝试时钟&#39;例子直接一切正常..那么我的CMakeLists.txt上有问题吗?

1 个答案:

答案 0 :(得分:1)

我设法找到了解决方案。

在我的CMakeLists.txt上我需要用“-arch = sm_50”为我的NVCC添加一个标志,在我的情况下,由于我的图形卡具有5.0的计算能力,因此它是sm_50,如果任何一个具有相同的错误,想要试试这个,你必须检查你的计算能力