嗨我在python中运行这个模糊检测代码(来源:https://www.pyimagesearch.com/2015/09/07/blur-detection-with-opencv/)
# import the necessary packages
from imutils import paths
import argparse
import cv2
def variance_of_laplacian(image):
# compute the Laplacian of the image and then return the focus
# measure, which is simply the variance of the Laplacian
return cv2.Laplacian(image, cv2.CV_64F).var()
# loop over the input images
for imagePath in paths.list_images("images/"):
# load the image, convert it to grayscale, and compute the
# focus measure of the image using the Variance of Laplacian
# method
image = cv2.imread(imagePath)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
fm = variance_of_laplacian(gray)
text = "Not Blurry"
# if the focus measure is less than the supplied threshold,
# then the image should be considered "blurry"
if fm < 100:
text = "Blurry"
# show the image
cv2.putText(image, "{}: {:.2f}".format(text, fm), (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 3)
cv2.imshow("Image", image)
print("{}: {:.2f}".format(text, fm))
key = cv2.waitKey(0)
使用此2173 x 3161输入文件 input image
这是输出节目 the output image 图像放大并且不显示。
在源代码中,他们使用450 x 600像素输入图像: input in source code 这是输出: output in source code
我认为图像的像素会影响输出。那么,我怎样才能将源代码中的输出输出到所有图像? 我是否必须调整输入图像的大小?如何?但如果我这样做,我担心它会影响他模糊的结果
答案 0 :(得分:0)
有一种特殊情况,您可以在以后创建窗口并加载图像。在这种情况下,您可以指定窗口是否可调整大小。它是通过函数cv2.namedWindow()完成的。默认情况下,标志为 cv2.WINDOW_AUTOSIZE 。但是,如果您将flag指定为 cv2.WINDOW_NORMAL ,则可以调整窗口大小。当图像尺寸过大并向轨道添加轨迹栏时,它会很有用。
我刚刚使用了问题中的代码,但添加了评论中提到的行cv2.namedWindow("Image", cv2.WINDOW_NORMAL)
。
# import the necessary packages
from imutils import paths
import argparse
import cv2
def variance_of_laplacian(image):
# compute the Laplacian of the image and then return the focus
# measure, which is simply the variance of the Laplacian
return cv2.Laplacian(image, cv2.CV_64F).var()
# loop over the input images
for imagePath in paths.list_images("images/"):
# load the image, convert it to grayscale, and compute the
# focus measure of the image using the Variance of Laplacian
# method
image = cv2.imread(imagePath)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
fm = variance_of_laplacian(gray)
text = "Not Blurry"
# if the focus measure is less than the supplied threshold,
# then the image should be considered "blurry"
if fm < 100:
text = "Blurry"
# show the image
cv2.putText(image, "{}: {:.2f}".format(text, fm), (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 3)
cv2.namedWindow("Image", cv2.WINDOW_NORMAL) #---- Added THIS line
cv2.imshow("Image", image)
print("{}: {:.2f}".format(text, fm))
key = cv2.waitKey(0)
答案 1 :(得分:0)
如果您想使用与您给出的示例完全相同的分辨率,则可以使用cv2.resize()
https://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html#resize方法或(如果您想保持比率x / y坐标)使用https://www.pyimagesearch.com/2015/02/02/just-open-sourced-personal-imutils-package-series-opencv-convenience-functions/
您仍然需要先决定是否要进行调整大小。按灰度或调整大小的顺序并不重要。
您可以添加以下命令:
resized_image = cv2.resize(image, (450, 600))