我想使用监督分类来对具有清晰时间模式的模式进行分类。例如,识别针叶林中落叶树的林分。 NDVI会以规则的方式改变落叶林中的加班时间,应该很容易检测到。我假设有一种简单的方法可以将时间数据集展平为单个图像,以便该图像中的波段可以用于分类算法。也许使用.map(....)
?
这里有一些代码来构建答案:
var startDate = '2016-05-01';
var endDate = '2016-09-01';
var lng = -122.3424; var lat = 37.9344; //SF
var region = ee.Geometry.Point(lng, lat);
//Image Import
var l8 = ee.ImageCollection('LANDSAT/LC08/C01/T1_TOA')
.filterBounds(region)
.filterDate(startDate,endDate);
// NDVI temporal
var ndvi = l8.map(function(image) {
var ndvi = image.normalizedDifference(['B5', 'B4']).rename("NDVI");
return ndvi;
});
Map.addLayer(ndvi,{},"NDVI Temporal"); // 8 images with 1 band
//NDVI FLATTENED??????? I want 1 image with 8 bands. The below code doesn't work...
var ndviFlat = ee.Image().addBands(ndvi.map(function(image){
var temp = image.select("NDVI");
return temp;
}));
从那里开始,我会将ndviFlat传递给.sampleRegions
,这只适用于Images
而不是ImageCollections
:
//Classification Model:
var points = ee.FeatureCollection([trainingPointsPos,trainingPointsNeg]).flatten();
var training = ndviFlat.sampleRegions({
collection: points,
properties: ['class'],
scale: 30
});
var trained = ee.Classifier.randomForest(20).train(training, 'class', bands);
classified = regLayers.select(bands).classify(trained);
答案 0 :(得分:1)
以这种方式:
var startDate = '2016-05-01';
var endDate = '2016-09-01';
var lng = -122.3424;
var lat = 37.9344; //SF
var region = ee.Geometry.Point(lng, lat);
//Image Import
var l8 = ee.ImageCollection('LANDSAT/LC08/C01/T1_TOA')
.filterBounds(region)
.filterDate(startDate, endDate);
var empty = ee.Image();
// NDVI temporal
var ndvi = ee.Image(l8.iterate(function(image, previous) {
var name = ee.String('NDVI_').cat(image.id());
var ndvi = image.normalizedDifference(['B5', 'B4']).rename(name);
return ee.Image(previous).addBands(ndvi);
}, empty));
// Remove the annoying non-band
ndvi = ndvi.select(ndvi.bandNames().remove('constant'));
Map.centerObject(region, 13);
Map.addLayer(ndvi, {}, 'ndvi');