有没有办法在groupby
和mean()
之后保留分类变量?
例如,给定数据框df
:
ratio Metadata_A Metadata_B treatment
0 54265.937500 B10 1 AB_cmpd_01
11 107364.750000 B10 2 AB_cmpd_01
22 95766.500000 B10 3 AB_cmpd_01
24 64346.250000 B10 4 AB_cmpd_01
25 52726.333333 B10 5 AB_cmpd_01
30 65056.600000 B11 1 UT
41 78409.600000 B11 2 UT
52 133533.000000 B11 3 UT
54 102433.571429 B11 4 UT
55 82217.588235 B11 5 UT
60 89843.600000 B2 1 UT
71 98544.000000 B2 2 UT
82 179330.000000 B2 3 UT
84 107132.400000 B2 4 UT
85 73096.909091 B2 5 UT
我需要在每个ratio
内平均超过Metadata_A
,但最后要保留列treatment
:
理论上,如:
df.groupby(by='Metadata_A').mean().reset_index()
ratio Metadata_A Metadata_B treatment
0 54265.937500 B10 2.5 AB_cmpd_01
1 78409.600000 B11 2.5 UT
2 107132.400000 B2 2.5 UT
但是,平均后列treatment
会消失。
答案 0 :(得分:4)
您可以将groupby
与agg
df.groupby(['Metadata_A','treatment'],as_index=False).agg({'Metadata_B':'mean','ratio':'first'})
Out[358]:
Metadata_A treatment Metadata_B ratio
0 B10 AB_cmpd_01 3 54265.9375
1 B11 UT 3 65056.6000
2 B2 UT 3 89843.6000
答案 1 :(得分:1)
问题在于pandas
不知道如何取treatment
的均值,因为这些是字符串。一种解决方案是使用groupby('Metadata_A')
获取资金,然后将这些值与原始数据框合并,然后再次groupby('Metadata_A')
:
# Get your means:
grp = df.groupby('Metadata_A').mean().reset_index()
# Merge those with the original `dataframe`, getting rid of extra columns
(df.merge(grp, on = ['Metadata_A'], suffixes=('', '_mean'))
.drop(['Metadata_B', 'ratio'], axis=1)
.groupby('Metadata_A')
.first()
.reset_index()
)
返回:
Metadata_A treatment ratio_mean Metadata_B_mean
0 B10 AB_cmpd_01 74893.954167 3
1 B11 UT 92330.071933 3
2 B2 UT 109589.381818 3
修改 @ Wen的treatment
和Metadata_A
分组方法比我刚才描述的方法更有意义。如果您正在寻找两个列的方法,您可以这样做:
df.groupby(['Metadata_A', 'treatment']).mean().reset_index()