以下问题是在Python 2.7.11中使用Pandas 0.17.1
创建的将分类列与期间和日期列分组时,分组中会显示意外的行。这是熊猫的错误,还是其他的东西?
df = pd.DataFrame({'date': pd.date_range('2015-12-29', '2016-1-3'),
'val1': [1] * 6,
'val2': range(6),
'cat1': ['a', 'b', 'c'] * 2,
'cat2': ['A', 'B', 'C'] * 2})
df['cat1'] = df.cat1.astype('category')
df['month'] = [d.to_period('M') for d in df.date]
>>> df
cat1 cat2 date val1 val2 month
0 a A 2015-12-29 1 0 2015-12
1 b B 2015-12-30 1 1 2015-12
2 c C 2015-12-31 1 2 2015-12
3 a A 2016-01-01 1 3 2016-01
4 b B 2016-01-02 1 4 2016-01
5 c C 2016-01-03 1 5 2016-01
使用常规系列(例如cat2
)对月份和日期进行分组符合预期:
>>> df.groupby(['month', 'date', 'cat2']).sum().unstack()
val1 val2
cat2 A B C A B C
month date
2015-12 2015-12-29 1 NaN NaN 0 NaN NaN
2015-12-30 NaN 1 NaN NaN 1 NaN
2015-12-31 NaN NaN 1 NaN NaN 2
2016-01 2016-01-01 1 NaN NaN 3 NaN NaN
2016-01-02 NaN 1 NaN NaN 4 NaN
2016-01-03 NaN NaN 1 NaN NaN 5
但是对分类进行分组会产生意想不到的结果。您将在索引中注意到额外日期与分组月份不对应。
>>> df.groupby(['month', 'date', 'cat1']).sum().unstack()
val1 val2
cat1 a b c a b c
month date
2015-12 2015-12-29 1 NaN NaN 0 NaN NaN
2015-12-30 NaN 1 NaN NaN 1 NaN
2015-12-31 NaN NaN 1 NaN NaN 2
2016-01-01 NaN NaN NaN NaN NaN NaN # <<< Extraneous row.
2016-01-02 NaN NaN NaN NaN NaN NaN # <<< Extraneous row.
2016-01-03 NaN NaN NaN NaN NaN NaN # <<< Extraneous row.
2016-01 2015-12-29 NaN NaN NaN NaN NaN NaN # <<< Extraneous row.
2015-12-30 NaN NaN NaN NaN NaN NaN # <<< Extraneous row.
2015-12-31 NaN NaN NaN NaN NaN NaN # <<< Extraneous row.
2016-01-01 1 NaN NaN 3 NaN NaN
2016-01-02 NaN 1 NaN NaN 4 NaN
2016-01-03 NaN NaN 1 NaN NaN 5
按月份或日期对分类进行分组可以正常工作,但不能像上面的示例中那样进行组合。
>>> df.groupby(['month', 'cat1']).sum().unstack()
val1 val2
cat1 a b c a b c
month
2015-12 1 1 1 0 1 2
2016-01 1 1 1 3 4 5
>>> df.groupby(['date', 'cat1']).sum().unstack()
val1 val2
cat1 a b c a b c
date
2015-12-29 1 NaN NaN 0 NaN NaN
2015-12-30 NaN 1 NaN NaN 1 NaN
2015-12-31 NaN NaN 1 NaN NaN 2
2016-01-01 1 NaN NaN 3 NaN NaN
2016-01-02 NaN 1 NaN NaN 4 NaN
2016-01-03 NaN NaN 1 NaN NaN 5
修改 此行为源于0.15.0更新。在此之前,这是输出:
>>> df.groupby(['month', 'date', 'cat1']).sum().unstack()
val1 val2
cat1 a b c a b c
month date
2015-12 2015-12-29 1 NaN NaN 0 NaN NaN
2015-12-30 NaN 1 NaN NaN 1 NaN
2015-12-31 NaN NaN 1 NaN NaN 2
2016-01 2016-01-01 1 NaN NaN 3 NaN NaN
2016-01-02 NaN 1 NaN NaN 4 NaN
2016-01-03 NaN NaN 1 NaN NaN 5
答案 0 :(得分:0)
正如大熊猫中所定义的,使用分类进行分组将始终拥有完整的类别集,即使没有该类别的任何数据,例如doc example here
您可以不使用分类,也可以在分组步骤后添加.dropna(how='all')
。