找出节点是否是二叉树中另一个节点的祖先

时间:2018-04-26 15:45:10

标签: data-structures time-complexity binary-tree

我需要为树中的每个节点添加一定量的字段,这样当给定两个节点x, y时,我需要找出x是否是{{1}的祖先} y复杂性。

我的第一个想法是为每个节点添加一个“深度”字段。然后我可以直接消除查询O(1),但这显然不够......

1 个答案:

答案 0 :(得分:0)

假设您构建了一棵树:

              a
             / \
            /   \ 
           /     \
          b       c
        /  \     / \
       /    \   /   \
      d      e f     g
      \             /  \
       h           i    j
       /
      k

每个节点都有一个附加字段uint32_t int lineage。如果要使用数组实现树,则不需要此额外字段。对于所有意图和目的,假设我们使用节点。

你可以使用类似的想法:

left  = 2 * parent + 1;
right = 2 * parent + 2;

但是,相反,在根节点处,让lineage等于1.对于所有后续节点,您正常插入,也传递沿袭。这将是一个整数,但您将对其进行逐位算术运算。如果你向左走,你只需向左移动(乘以2),如果你向右移动,向左移动+ 1。

/**
 * Starts recursive insertion
 */
struct node* insert(struct node* node, int key) {

  // Create root
  if (node == NULL) {

    // Root has value 1
    node = newNode(key, 1);

  // Start recursion to left
  } else if (key < node->key) {

    node->left = insert(node->left, key, node->lineage << 1);

  // Start recursion to right
  } else if (key > node->key) {

    node->right = insert(node->right, key, (node->lineage << 1) + 1);
  }

  return node;
}

/**
 * Recursive insert function
 */
struct node* insert(struct node* node, int key, uint32_t lineage) {

    if (node == NULL) {

      return newNode(key, lineage);
    }


    if (key < node->key) {
      node->left  = insert(node->left, key, 2 * node->lineage);
    }

    else if (key > node->key) {
      node->right = insert(node->right, key, 2 * node->lineage + 1);
    }

    return node;
}

基本上,您可以创建二进制模式。如果你根据二元谱系来看你的树,那就是:

              1
             / \
            /   \ 
           /     \
          /       \
         10       11 
        /  \      / \
       /    \    /   \
     100   101 110   111
      \             /  \
     1001         1110  1111
       /
    10010

或更简单:

              1
             / \
            /   \ 
           /     \
          /       \
         1L       1R 
        /  \      / \
       /    \    /   \
     1LL   1LR 1RL   1RR
      \             /  \
     1LLR        1RRL  1RRR
       /
    1LLRL

无论你将它们称为Ls和Rs还是1和0,我们知道节点是祖先或节点,二进制沿袭(或LR模式)必须是子节点的子串,从左边开始在右边,条件是祖先的二进制字符串严格小于孩子的字符串。

但是,我们使用整数而不是字符串,以便我们可以确定它是否是恒定时间内的子字符串。

重要部分

// Calculate if ancestor in O(1), no loops, no recursion
bool is_ancestor(struct node* parent, struct node* child) {

  // Both pointers must be non-null
  if (parent == NULL || child == NULL) {

    return false;
  }

  // Get their lineages
  uint32_t p_lin = parent->lineage;
  uint32_t c_lin = child->lineage;

  // Calculate the number of bits in
  // binary lineage number
  int p_bits = log2(p_lin);
  int c_bits = log2(c_lin);

  // Ancestors must
  // have less bits than
  // children. If this is false,
  // than the parent pointer
  // is at a lower point in the tree
  if (p_bits >= c_bits) {

    return false;
  }

  // Calculate difference in bits
  // which represents the number of
  // levels in between the child and parent
  int diff = c_bits - p_bits;

  // Shift child lineage to
  // the right by that much
  // to get rid of those bits, and
  // only leave the amount of
  // bits they should have in
  // common
  c_lin >>= diff;

  // First N bits should be
  // exactly the same
  if (c_lin == p_lin) {

    return true;
  }

  // If we got here, the child`
  // is lower in the tree, but
  // there is no path from the
  // ancestor to the child
  return false;

}

以下log2()来自What's the quickest way to compute log2 of an integer in C#?

O(1)
int log2(uint32_t n) {

  int bits = 0;

  if (n > 0xffff) {
    n >>= 16;
    bits = 0x10;
  }

  if (n > 0xff) {
    n >>= 8;
    bits |= 0x8;
  }

  if (n > 0xf) {
    n >>= 4;
    bits |= 0x4;
  }

  if (n > 0x3) {
    n >>= 2;
    bits |= 0x2;
  }

  if (n > 0x1) {
    bits |= 0x1;
  }

  return bits;
}

使用:

#include <stdio.h>
#include <stdlib.h>
#include <cstdint>

#include "tree.c"  // Your tree

int main() {

  /* Let us create following BST
              50
           /     \
          30      70
         /  \    /  \
       20   40  60   80 */
    struct node *root = NULL;
    root = insert(root, 50);
    insert(root, 30);
    insert(root, 20);
    insert(root, 40);
    insert(root, 70);
    insert(root, 60);
    insert(root, 80);

    printf("preorder:\n");

    preorder(root);

    struct node* parent  = get(root, 30);
    struct node* child   = get(root, 40);

    bool ancestor = is_ancestor(parent, child);

    printf("\n %d is a child or %d: %d\n", parent->key, child->key, ancestor);


    return 0;
}

输出:

preorder:
k: 50 lineage: 1
k: 30 lineage: 2
k: 20 lineage: 4
k: 40 lineage: 5
k: 70 lineage: 3
k: 60 lineage: 6
k: 80 lineage: 7

 30 is a child or 40: 1

如果它有用,我可以给你完整的代码tree.c,这样你就可以自己试试。这只是我尝试在一棵小树上的想法。很抱歉很长的解释,但我也对这个问题感兴趣。