我想使用opencv库中的边缘检测算法。 这是一段python代码:
from opencv.cv import *
from opencv.highgui import *
img = cvLoadImage ('xxx.jpg')
cvNamedWindow ('img')
cvShowImage ('img', img)
cvWaitKey ()
canny = cvCreateImage (cvSize (img.width, img.height), 8, 3)
cvCanny (img, canny, 50, 200)
harris = cvCreateImage (cvSize (img.width, img.height), 8, 3)
cvCornerHarris (img, harris, 5, 5, 0.1)
加载和显示图像工作正常,但canny和harris转换失败
cvCanny
失败了:
RuntimeError: openCV Error:
Status=Unsupported format or combination of formats
function name=cvCanny
error message=
file_name=cv/cvcanny.cpp
line=72
和cvCornerHarris
因此错误而失败:
RuntimeError: openCV Error:
Status=Assertion failed
function name=cvCornerHarris
error message=src.size() == dst.size() && dst.type() == CV_32FC1
file_name=cv/cvcorner.cpp
line=370
从这条消息我可以推断出加载的图像格式无效。但我不明白如何改变它。
以下是一些img
字段的值:
img.type = 1111638032
img.nChannels = 3
img.depth = 8
答案 0 :(得分:8)
对于对此类问题感兴趣的其他人,我建议您查看http://simplecv.org
以下是我编写的一些代码,可以对从网络摄像头获取的图像进行线检测。它甚至会在http上显示图像。
import SimpleCV
import time
c = SimpleCV.Camera(1)
js = SimpleCV.JpegStreamer()
while(1):
img = c.getImage()
img = img.smooth()
lines = img.findLines(threshold=25,minlinelength=20,maxlinegap=20)
[line.draw(color=(255,0,0)) for line in lines]
#find the avg length of the lines
sum = 0
for line in lines:
sum = line.length() + sum
if sum:
print sum / len(lines)
else:
print "No lines found!"
img.save(js.framebuffer)
time.sleep(0.1)
查看我在http://labs.radiantmachines.com/beard/制作的项目。它将检测你的脖子胡须有多长:)
答案 1 :(得分:6)
这是固定代码。请参阅内联评论。长话短说:您的数据类型错误。阅读API。
try:
from opencv.cv import *
from opencv.highgui import *
except:
#
# Different OpenCV installs name their packages differently.
#
from cv import *
if __name__ == '__main__':
import sys
#
# 1 = Force the image to be loaded as RGB
#
img = LoadImage (sys.argv[1], 1)
NamedWindow ('img')
ShowImage ('img', img)
WaitKey ()
#
# Canny and Harris expect grayscale (8-bit) input.
# Convert the image to grayscale. This is a two-step process:
# 1. Convert to 3-channel YCbCr image
# 2. Throw away the chroma (Cb, Cr) and keep the luma (Y)
#
yuv = CreateImage(GetSize(img), 8, 3)
gray = CreateImage(GetSize(img), 8, 1)
CvtColor(img, yuv, CV_BGR2YCrCb)
Split(yuv, gray, None, None, None)
canny = CreateImage(GetSize(img), 8, 1)
Canny(gray, canny, 50, 200)
NamedWindow ('canny')
ShowImage ('canny', canny)
WaitKey()
#
# The Harris output must be 32-bit float.
#
harris = CreateImage (GetSize(img), IPL_DEPTH_32F, 1)
CornerHarris(gray, harris, 5, 5, 0.1)
答案 2 :(得分:2)
您可以在一步而不是两步中将图像转换为灰度:
gray = cv.CreateMat(img.height, img.width, cv.CV_8UC1)
cv.CvtColor(img, gray, cv.CV_BGR2GRAY)