你如何验证二叉搜索树?

时间:2009-02-01 01:41:39

标签: algorithm data-structures binary-search-tree

我在这里读到了一个名为验证二元搜索树的访谈练习。

这究竟是如何工作的?在验证二叉搜索树时会有什么需要?我写了一个基本的搜索树,但从未听说过这个概念。

31 个答案:

答案 0 :(得分:111)

实际上这是每个人在面试中都犯的错误。

必须检查Leftchild(minLimitof node,node.value)

必须检查Rightchild(node.value,节点的MaxLimit)

IsValidBST(root,-infinity,infinity);

bool IsValidBST(BinaryNode node, int MIN, int MAX) 
{
     if(node == null)
         return true;
     if(node.element > MIN 
         && node.element < MAX
         && IsValidBST(node.left,MIN,node.element)
         && IsValidBST(node.right,node.element,MAX))
         return true;
     else 
         return false;
}

另一种解决方案(如果空间不是约束): 执行树的inorder遍历并将节点值存储在数组中。如果数组按排序顺序,则为有效的BST,否则不是。

答案 1 :(得分:15)

“验证”二进制搜索树意味着您检查它确实包含左侧的所有较小项目和右侧的大项目。从本质上讲,检查二叉树是否为二进制搜索树。

答案 2 :(得分:14)

我找到的最佳解决方案是O(n),它不使用额外的空间。它类似于inorder遍历,但不是将其存储到数组中,然后检查它是否已排序,我们可以采用静态变量并检查顺序是否遍历数组是否已排序。

static struct node *prev = NULL;

bool isBST(struct node* root)
{
    // traverse the tree in inorder fashion and keep track of prev node
    if (root)
    {
        if (!isBST(root->left))
          return false;

        // Allows only distinct valued nodes
        if (prev != NULL && root->data <= prev->data)
          return false;

        prev = root;

        return isBST(root->right);
    }

    return true;
}

答案 3 :(得分:7)

使用inorder遍历的迭代解决方案。

bool is_bst(Node *root) {
  if (!root)
    return true;

  std::stack<Node*> stack;
  bool started = false;
  Node *node = root;
  int prev_val;

  while(true) {
    if (node) {
      stack.push(node);
      node = node->left();
      continue;
    }
    if (stack.empty())
      break;
    node = stack.top();
    stack.pop();

    /* beginning of bst check */
    if(!started) {
      prev_val = node->val();
      started = true;
    } else {
      if (prev_val > node->val())
        return false;
      prev_val = node->val();
    }
    /* end of bst check */

    node = node->right();
  }
  return true;
}

答案 4 :(得分:5)

这是我在Clojure中的解决方案:

(defstruct BST :val :left :right)

(defn in-order [bst]
  (when-let [{:keys [val, left, right]} bst]
    (lazy-seq
      (concat (in-order left) (list val) (in-order right)))))

(defn is-strictly-sorted? [col]
  (every?
    (fn [[a b]] (< a  b))
    (partition 2 1 col)))

(defn is-valid-BST [bst]
  (is-strictly-sorted? (in-order bst)))

答案 5 :(得分:3)

由于BST的有序遍历是非减少序列,我们可以使用此属性来判断二叉树是否为BST。使用Morris traversal并维护pre节点,我们可以获得 O(n)时间和O(1)空间复杂度的解决方案。这是我的代码

public boolean isValidBST(TreeNode root) {
    TreeNode pre = null, cur = root, tmp;
    while(cur != null) {
        if(cur.left == null) {
            if(pre != null && pre.val >= cur.val) 
                return false;
            pre = cur;
            cur = cur.right;
        }
        else {
            tmp = cur.left;
            while(tmp.right != null && tmp.right != cur)
                tmp = tmp.right;
            if(tmp.right == null) { // left child has not been visited
                tmp.right = cur;
                cur = cur.left;
            }
            else { // left child has been visited already
                tmp.right = null;
                if(pre != null && pre.val >= cur.val) 
                    return false;
                pre = cur;
                cur = cur.right;
            }
        }
    }
    return true;
}

答案 6 :(得分:3)

这是我在python中的答案,它已经在 hackerrank网站

中解决了所有角落案例并经过了充分测试
""" Node is defined as
class node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
"""

def checkBST(root):
    return checkLeftSubTree(root, root.left) and checkRightSubTree(root, root.right)

def checkLeftSubTree(root, subTree):
    if not subTree:
        return True
    else:
        return root.data > subTree.data \
        and checkLeftSubTree(root, subTree.left) \ 
        and checkLeftSubTree(root, subTree.right) \
        and checkLeftSubTree(subTree, subTree.left) \
        and checkRightSubTree(subTree, subTree.right)

def checkRightSubTree(root, subTree):
    if not subTree:
        return True
    else:
        return root.data < subTree.data \ 
        and checkRightSubTree(root, subTree.left) \
        and checkRightSubTree(root, subTree.right) \
        and checkRightSubTree(subTree, subTree.right) \
        and checkLeftSubTree(subTree, subTree.left)

答案 7 :(得分:1)

我最近在电话采访中得到了这个问题,并且比我应该做的更多。我试图跟踪子节点中的最小值和最大值,在面试的压力下,我无法将我的大脑包裹在不同的情况下。

昨晚在睡着之后想到它,我意识到这就像跟踪你在顺序遍历期间访问过的最后一个节点一样简单。在Java中:

public <T extends Comparable<T>> boolean isBst(TreeNode<T> root) {
    return isBst(root, null);
}

private <T extends Comparable<T>> boolean isBst(TreeNode<T> node, TreeNode<T> prev) {
    if (node == null)
        return true;

    if (isBst(node.left, prev) && (prev == null || prev.compareTo(node) < 0 ))
        return isBst(node.right, node);

    return false;
}

答案 8 :(得分:1)

在Java中,允许在任一子树中具有相同值的节点:

public boolean isValid(Node node) {
    return isValid(node, Integer.MIN_VALUE, Integer.MAX_VALUE);
}

private boolean isValid(Node node, int minLimit, int maxLimit) {
    if (node == null)
        return true;
    return minLimit <= node.value && node.value <= maxLimit
            && isValid(node.left, minLimit, node.value)
            && isValid(node.right, node.value, maxLimit);
}

答案 9 :(得分:1)

bool ValidateBST(Node *pCurrentNode, int nMin = INT_MIN, int nMax = INT_MAX)
{
    return
    (
        pCurrentNode == NULL
    )
    ||
    (
        (
            !pCurrentNode->pLeftNode ||
            (
                pCurrentNode->pLeftNode->value < pCurrentNode->value &&
                pCurrentNode->pLeftNode->value < nMax &&
                ValidateBST(pCurrentNode->pLeftNode, nMin, pCurrentNode->value)
            )
        )
        &&
        (
            !pCurrentNode->pRightNode ||
            (
                pCurrentNode->pRightNode->value > pCurrentNode->value &&
                pCurrentNode->pRightNode->value > nMin &&
                ValidateBST(pCurrentNode->pRightNode, pCurrentNode->value, nMax)
            )
        )
    );
}

答案 10 :(得分:1)

bool BinarySearchTree::validate() {
    int minVal = -1;
    int maxVal = -1;
    return ValidateImpl(root, minVal, maxVal);
}

bool BinarySearchTree::ValidateImpl(Node *currRoot, int &minVal, int &maxVal)
{
    int leftMin = -1;
    int leftMax = -1;
    int rightMin = -1;
    int rightMax = -1;

    if (currRoot == NULL) return true;

    if (currRoot->left) {
        if (currRoot->left->value < currRoot->value) {
            if (!ValidateImpl(currRoot->left, leftMin, leftMax)) return false;
            if (leftMax != currRoot->left->value && currRoot->value < leftMax)  return false;
        }
        else
            return false;
    } else {
        leftMin = leftMax = currRoot->value;
    }

    if (currRoot->right) {
        if (currRoot->right->value > currRoot->value) {
            if(!ValidateImpl(currRoot->right, rightMin, rightMax)) return false;
            if (rightMin != currRoot->right->value && currRoot->value > rightMin)  return false;
        }
        else return false;
    } else {
        rightMin = rightMax = currRoot->value;
    }

    minVal = leftMin < rightMin ? leftMin : rightMin;
    maxVal = leftMax > rightMax ? leftMax : rightMax;

    return true;
}

答案 11 :(得分:1)

“最好定义一个不变的第一个。这里不变量是 - 有序遍历中BST的任何两个连续元素必须严格按其外观的顺序递增(不能相等,总是增加因此,解决方案可以只是一个简单的有序遍历,记住最后一个访问过的节点,并将当前节点与最后一个访问过的节点进行比较,以'&lt;'进行遍历。 (或'&gt;')。“

答案 12 :(得分:0)

这是Sedgewick算法类中的Java解决方案。 检查完整的BST实施here

我添加了一些解释性评论

private boolean isBST() {
    return isBST(root, null, null);

}

private boolean isBST(Node x, Key min, Key max) {
    if (x == null) return true;
    // when checking right subtree min is key of x's parent
    if (min != null && x.key.compareTo(min) <= 0) return false;
    // when checking left subtree, max is key of x's parent
    if (max != null && x.key.compareTo(max) >= 0) return false;
    // check left subtree and right subtree
    return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);

}

答案 13 :(得分:0)

  • iterative函数迭代检查给定的树是否为二叉搜索树。
  • recurse函数递归检查给定的树是否是二进制搜索树。
  • iterative函数中,我使用bfs来检查BST。
  • recurse函数中,我使用dfs检查BST。
  • 两个解决方案的时间复杂度均为O(n)
  • iterative解决方案比recurse解决方案具有优势,也就是说iterative解决方案可以尽早停止。
  • 即使recurse函数也可以通过全局标志值进行优化,以尽早停止。
  • 两种解决方案的想法是,左子级应在-infinity到其父节点(即根节点)的值的范围内
  • 正确的孩子应该在其父节点(即根节点)的值的+ infinity范围内
  • 然后继续比较该范围内的当前节点值。如果任何节点的值不在该范围内,则返回False

    class Solution:
        def isValidBST(self, root):
            """
            :type root: TreeNode
            :rtype: bool
            """
            return self.iterative(root)
            # return self.recurse(root, float("inf"), float("-inf"))
    
        def iterative(self, root):
            if not root:
                return True
    
            level = [[root, -float("inf"), float("inf")]]
    
            while level:
                next_level = []
    
                for element in level:
                    node, min_val, max_val = element
                    if min_val<node.val<max_val:
                        if node.left:
                            next_level.append([node.left, min_val, node.val])
                        if node.right:
                            next_level.append([node.right, node.val, max_val])
                    else:
                        return False
                level = next_level
    
            return True
    
        def recurse(self, root, maxi, mini):
            if root is None:
                return True
    
            if root.val < mini or root.val > maxi:
                return False
    
            return self.recurse(root.left, root.val-1, mini) and self.recurse(root.right, maxi, root.val+1)
    

答案 14 :(得分:0)

一个班轮

bool is_bst(Node *root, int from, int to) {
   return (root == NULL) ? true :
     root->val >= from && root->val <= to &&
     is_bst(root->left, from, root->val) &&
     is_bst(root->right, root->val, to);
}

虽然很长。

答案 15 :(得分:0)

Python实现示例。本示例使用类型注释。但是,由于Node类使用自身,因此我们需要将其作为模块的第一行:

from __future__ import annotations

否则,您将得到name 'Node' is not defined错误。本示例还使用数据类作为示例。为了检查它是否是BST,它使用递归检查左节点和右节点的值。

"""Checks if Binary Search Tree (BST) is balanced"""

from __future__ import annotations
import sys
from dataclasses import dataclass

MAX_KEY = sys.maxsize
MIN_KEY = -sys.maxsize - 1


@dataclass
class Node:
    value: int
    left: Node
    right: Node

    @property
    def is_leaf(self) -> bool:
        """Check if node is a leaf"""
        return not self.left and not self.right


def is_bst(node: Node, min_value: int, max_value: int) -> bool:
    if node.value < min_value or max_value < node.value:
        return False
    elif node.is_leaf:
        return True

    return is_bst(node.left, min_value, node.value) and is_bst(
        node.right, node.value, max_value
    )


if __name__ == "__main__":
    node5 = Node(5, None, None)
    node25 = Node(25, None, None)
    node40 = Node(40, None, None)
    node10 = Node(10, None, None)

    # balanced tree
    node30 = Node(30, node25, node40)
    root = Node(20, node10, node30)
    print(is_bst(root, MIN_KEY, MAX_KEY))

    # unbalanced tree
    node30 = Node(30, node5, node40)
    root = Node(20, node10, node30)
    print(is_bst(root, MIN_KEY, MAX_KEY))

答案 16 :(得分:0)

http://www.jiuzhang.com/solutions/validate-binary-search-tree/启发

有两种通用解决方案:遍历和划分&amp;&amp;征服。

public class validateBinarySearchTree {
    public boolean isValidBST(TreeNode root) {
        return isBSTTraversal(root) && isBSTDivideAndConquer(root);
    }

    // Solution 1: Traversal
    // The inorder sequence of a BST is a sorted ascending list
    private int lastValue = 0; // the init value of it doesn't matter.
    private boolean firstNode = true;
    public boolean isBSTTraversal(TreeNode root) {
        if (root == null) {
            return true;
        }

        if (!isValidBST(root.left)) {
            return false;
        }

        // firstNode is needed because of if firstNode is Integer.MIN_VALUE,
        // even if we set lastValue to Integer.MIN_VALUE, it will still return false
        if (!firstNode && lastValue >= root.val) {
            return false;
        }

        firstNode = false;
        lastValue = root.val;

        if (!isValidBST(root.right)) {
            return false;
        }

        return true;

    }

    // Solution 2: divide && conquer
    private class Result {
        int min;
        int max;
        boolean isBST;
        Result(int min, int max, boolean isBST) {
            this.min = min;
            this.max = max;
            this.isBST = isBST;
        }
    }

    public boolean isBSTDivideAndConquer(TreeNode root) {
        return isBSTHelper(root).isBST;
    }

    public Result isBSTHelper(TreeNode root) {
        // For leaf node's left or right
        if (root == null) {
            // we set min to Integer.MAX_VALUE and max to Integer.MIN_VALUE
            // because of in the previous level which is the leaf level,
            // we want to set the min or max to that leaf node's val (in the last return line)
            return new Result(Integer.MAX_VALUE, Integer.MIN_VALUE, true);
        }

        Result left = isBSTHelper(root.left);
        Result right = isBSTHelper(root.right);

        if (!left.isBST || !right.isBST) {
            return new Result(0,0, false);
        }

        // For non-leaf node
        if (root.left != null && left.max >= root.val
                && root.right != null && right.min <= root.val) {
            return new Result(0, 0, false);
        }

        return new Result(Math.min(left.min, root.val),
                Math.max(right.max, root.val), true);
    }
}

答案 17 :(得分:0)

这适用于重复项。

// time O(n), space O(logn)
// pseudocode
is-bst(node, min = int.min, max = int.max):
    if node == null:
        return true
    if node.value <= min || max < node.value:
        return false
    return is-bst(node.left, min, node.value)
        && is-bst(node.right, node.value, max)

即使使用int.min类型的int.maxNullable值也适用。

// time O(n), space O(logn)
// pseudocode
is-bst(node, min = null, max = null):
    if node == null:
        return true
    if min != null && node.value <= min
        return false
    if max != null && max < node.value:
        return false
    return is-bst(node.left, min, node.value)
        && is-bst(node.right, node.value, max)

答案 18 :(得分:0)

BST示例 enter image description here

    public bool IsBinarySearchTree(TreeNode root)
    {
        return IsValid(root, long.MinValue, long.MaxValue);
    }

    private static bool IsValid(TreeNode node, long min, long max)
    {
        if (node == null)
        {
            return true;
        }

        if (node.Value >= max || node.Value <= min)
        {
            return false;
        }

        return IsValid(node.Left, min, node.Value) && IsValid(node.Right, node.Value, max);
    }

其中TreeNode

   public class TreeNode
   {
       public int Value;
       public TreeNode Left;
       public TreeNode Right;

       public TreeNode(int value)
       {
           Value = value;
       }
   }

这是详细说明https://codestandard.net/articles/validate-binary-search-tree/

答案 19 :(得分:0)

迭代解决方案。

private static boolean checkBst(bst node) {

    Stack<bst> s = new Stack<bst>();
    bst temp;
    while(node!=null){
        s.push(node);
        node=node.left;
    }
    while (!s.isEmpty()){
        node = s.pop();
        System.out.println(node.val);
        temp = node;
        if(node.right!=null){
            node = node.right;
            while(node!=null)
            {
                //Checking if the current value is lesser than the previous value and ancestor.
                if(node.val < temp.val)
                    return false;
                if(!s.isEmpty())
                    if(node.val>s.peek().val)
                        return false;
                s.push(node);
                if(node!=null)
                node=node.left;
            }
        }
    }
    return true;
}

答案 20 :(得分:0)

以下是BST验证的Java实现,其中我们按顺序遍历树DFS,如果我们得到任何大于最后一个数字的数字,则返回false。

static class BSTValidator {
  private boolean lastNumberInitialized = false;
  private int lastNumber = -1;

  boolean isValidBST(TreeNode node) {
    if (node.left != null && !isValidBST(node.left)) return false;

    // In-order visiting should never see number less than previous
    // in valid BST.
    if (lastNumberInitialized && (lastNumber > node.getData())) return false;
    if (!lastNumberInitialized) lastNumberInitialized = true;

    lastNumber = node.getData();

    if (node.right != null && !isValidBST(node.right)) return false;

    return true;
  }
}

答案 21 :(得分:0)

我写了一个解决方案,使用inorder遍历BST并检查节点是否是 增加空间O(1)和时间O(n)的顺序。 TreeNode predecessor是prev节点。我不确定解决方案是否正确。因为inorder遍历无法定义整个树。

public boolean isValidBST(TreeNode root, TreeNode predecessor) {
    boolean left = true, right = true;
    if (root.left != null) {
        left = isValidBST(root.left, predecessor);
    }
    if (!left)
        return false;

    if (predecessor.val > root.val)
        return false;

    predecessor.val = root.val;
    if (root.right != null) {
        right = isValidBST(root.right, predecessor);
    }

    if (!right)
        return false;

    return true;

}

答案 22 :(得分:0)

递归很容易,但迭代方法更好,上面有一个迭代版本,但它太复杂而不必要。以下是您在c++找到的最佳解决方案:

此算法在O(N)时间内运行,需要O(lgN)空间。

struct TreeNode
{
    int value;
    TreeNode* left;
    TreeNode* right;
};

bool isBST(TreeNode* root) {
    vector<TreeNode*> stack;
    TreeNode* prev = nullptr;
    while (root || stack.size()) {
        if (root) {
           stack.push_back(root);
           root = root->left;
        } else {
            if (prev && stack.back()->value <= prev->value)
                return false;
            prev = stack.back();
            root = prev->right;                    
            stack.pop_back();
        }
    }
    return true;
}

答案 23 :(得分:0)

bool isBST(struct node* root)
{
    static struct node *prev = NULL;
    // traverse the tree in inorder fashion and keep track of prev node
    if (root)
    {
        if (!isBST(root->left))
            return false;
        // Allows only distinct valued nodes
        if (prev != NULL && root->data <= prev->data)
            return false;
        prev = root;
        return isBST(root->right);
    }
    return true;
}

工作正常:)

答案 24 :(得分:0)

要确定给定BT是否为任何数据类型的BST,您需要采用以下方法。 1.使用inorder遍历调用递归函数直到叶节点结束 2.自己构建最小值和最大值。

树元素必须小于/大于运算符定义。

#define MIN (FirstVal, SecondVal) ((FirstVal) < (SecondVal)) ? (FirstVal):(SecondVal)
#define MAX (FirstVal, SecondVal) ((FirstVal) > (SecondVal)) ? (FirstVal):(SecondVal)

template <class T>
bool IsValidBST (treeNode &root)
{

   T min,  max;
   return IsValidBST (root, &min, &max);
}

template <class T>
bool IsValidBST (treeNode *root, T *MIN , T *MAX)
{
   T leftMin, leftMax, rightMin, rightMax;
   bool isValidBST;

   if (root->leftNode == NULL && root->rightNode == NULL)
   {
      *MIN = root->element;
      *MAX = root->element;
      return true;
   }

  isValidBST = IsValidBST (root->leftNode, &leftMin, &leftMax);

  if (isValidBST)
    isValidBST = IsValidBST (root->rightNode, &rightMin, &rightMax);

  if (isValidBST)
  {
     *MIN = MIN (leftMIN, rightMIN);
     *Max = MAX (rightMax, leftMax);
  }

  return isValidBST;
}

答案 25 :(得分:0)

// using inorder traverse based Impl
bool BinarySearchTree::validate() {
    int val = -1;
    return ValidateImpl(root, val);
}

// inorder traverse based Impl
bool BinarySearchTree::ValidateImpl(Node *currRoot, int &val) {
    if (currRoot == NULL) return true;

    if (currRoot->left) {
        if (currRoot->left->value > currRoot->value) return false;
        if(!ValidateImpl(currRoot->left, val)) return false;
    }

    if (val > currRoot->value) return false;
    val = currRoot->value;

    if (currRoot->right) {
        if (currRoot->right->value < currRoot->value) return false;
        if(!ValidateImpl(currRoot->right, val)) return false;
    }
    return true;
}

答案 26 :(得分:0)

递归解决方案:

isBinary(root)
    {
        if root == null 
          return true
       else if( root.left == NULL and root.right == NULL)
          return true
       else if(root.left == NULL)
           if(root.right.element > root.element)
               rerturn isBInary(root.right)
        else if (root.left.element < root.element)
              return isBinary(root.left)
        else
              return isBInary(root.left) and isBinary(root.right)

    }

答案 27 :(得分:-1)

 private void validateBinarySearchTree(Node node) {
    if (node == null) return;

    Node left = node.getLeft();
    if (left != null) {
        if (left.getData() < node.getData()) {
            validateBinarySearchTree(left);
        } else {
            throw new IllegalStateException("Not a valid Binary Search tree");
        }
    }

    Node right = node.getRight();
    if (right != null) {
        if (right.getData() > node.getData()) {
            validateBinarySearchTree(right);
        } else {
            throw new IllegalStateException("Not a valid Binary Search tree");
        }
    }
}

答案 28 :(得分:-1)

这是不使用额外空间的迭代解决方案。

Node{
     int value;
     Node right, left
  }

  public boolean ValidateBST(Node root){
    Node currNode = root;
    Node prevNode = null;
    Stack<Node> stack = new Stack<Node>();
    while(true){
        if(currNode != null){
            stack.push(currNode);
            currNode = currNode.left;
            continue;
        }
        if(stack.empty()){
            return;
        }
        currNode = stack.pop();
        if(prevNode != null){
            if(currNode.value < prevNode.value){
                return false;
            }
        }
        prevNode = currNode;
        currNode = currNode.right;
    }
}

答案 29 :(得分:-3)

这是我用JavaScript编写的递归解决方案

function isBST(tree) {
  if (tree === null) return true;

  if (tree.left != undefined && tree.left.value > tree.value) {
    return false;
  }

  if (tree.right != undefined && tree.right.value <= tree.value) {
    return false;
  }

  return isBST(tree.left) && isBST(tree.right);
}

答案 30 :(得分:-3)

boolean isBST(Node root) {
    if (root == null) { return true; }
    return (isBST(root.left) && (isBST(root.right) && (root.left == null || root.left.data <= root.data) && (root.right == null || root.right.data > root.data));
}