我有一个包含一些数据的csv文件
,date,location,device,provider,cpu,mem,load,drops,id,latency,gw_latency,upload,download,sap_drops,sap_latency,alert_id
389,2018-02-13 09:20:17.572685+00:00,ASA,10.11.100.1,BOM,4.0,23.0,0.25,0.0,,,,,,,,
390,2018-02-13 09:20:21.836284+00:00,ASA,10.11.100.1,COD,4.0,23.0,2.08,0.0,,,,,,,,
391,2018-02-13 09:30:59.401178+00:00,ASA,10.11.100.1,COD,5.0,23.0,8.0,0.0,,,,,,,,
392,2018-02-13 09:31:03.667730+00:00,ASA,10.11.100.1,COD,5.0,23.0,3.5,0.0,,,,,,,,
393,2018-02-13 09:41:14.666626+00:00,ASA,10.11.100.1,BOM,4.0,23.0,0.5,0.0,,,,,,,,
394,2018-02-13 09:41:18.935061+00:00,ASA,10.11.100.1,DAE,4.0,23.0,3.0,0.0,,,,,,,,
395,2018-02-13 09:50:17.491014+00:00,ASA,10.11.100.1,DAE,5.0,23.0,8.25,0.0,,,,,,,,
396,2018-02-13 09:50:21.751805+00:00,BBB,10.11.100.1,BOM,5.0,23.0,2.75,0.0,,,,,,,,
397,2018-02-13 10:00:18.387647+00:00,BBB,10.11.100.1,CXU,5.0,23.0,2.0,0.0,,,,,,,,
398,2018-02-13 10:00:22.847626+00:00,ASA,10.11.100.1,BOM,5.0,23.0,3.17,0.0,,,,,,,,
399,2018-02-13 10:10:17.521642+00:00,BBB,10.11.100.1,DAE,5.0,23.0,1.0,0.0,,,,,,,,
400,2018-02-13 10:10:21.786720+00:00,BBB,10.11.100.1,DAE,5.0,23.0,2.42,0.0,,,,,,,,
401,2018-02-13 10:14:38.085999+00:00,BBB,10.11.100.1,CXU,4.0,23.0,0.25,0.0,,,,,,,,
..................................................................................
..................................................................................
正如您所看到的,在几个时间间隔内有很多日期2018-02-13
的条目。我想将这些条目放入24
小时间隔,其中每小时将包含一个值(平均值)。这就是我所做的
df_next = df.loc['2018-04-13'].resample('H')["cpu"].mean().fillna(0)
但是对于日期2018-04-13
,收集的数据最多只有10:00
小时(最后一个条目是10:14:38
)。所以它只能让我达到这个目的。对于其他一些日期,如果数据是从9:00
开始收集的,那么我只从9:00
获得每小时的间隔。
如果从24
开始,无论在什么时候收集数据,我如何获得从00:00
开始的完整0
小时间隔?所以基本上它将分配mean
小时收集数据的时间没有收集数据和381,2018-02-13 00:00:00.000000+00:00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
382,2018-02-13 01:00:00.000000+00:00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
383,2018-02-13 02:00:00.000000+00:00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
384,2018-02-13 03:00:00.000000+00:00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
385,2018-02-13 04:00:00.000000+00:00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
386,2018-02-13 05:00:00.000000+00:00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
387,2018-02-13 06:00:00.000000+00:00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
388,2018-02-13 07:00:00.000000+00:00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
388,2018-02-13 08:00:00.000000+00:00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
389,2018-02-13 09:20:17.572685+00:00,ASA,10.11.100.1,BOM,4.0,23.0,0.25,0.0,,,,,,,,
390,2018-02-13 09:20:21.836284+00:00,ASA,10.11.100.1,COD,4.0,23.0,2.08,0.0,,,,,,,,
391,2018-02-13 09:30:59.401178+00:00,ASA,10.11.100.1,COD,5.0,23.0,8.0,0.0,,,,,,,,
392,2018-02-13 09:31:03.667730+00:00,ASA,10.11.100.1,COD,5.0,23.0,3.5,0.0,,,,,,,,
393,2018-02-13 09:41:14.666626+00:00,ASA,10.11.100.1,BOM,4.0,23.0,0.5,0.0,,,,,,,,
394,2018-02-13 09:41:18.935061+00:00,ASA,10.11.100.1,DAE,4.0,23.0,3.0,0.0,,,,,,,,
395,2018-02-13 09:50:17.491014+00:00,ASA,10.11.100.1,DAE,5.0,23.0,8.25,0.0,,,,,,,,
396,2018-02-13 09:50:21.751805+00:00,BBB,10.11.100.1,BOM,5.0,23.0,2.75,0.0,,,,,,,,
397,2018-02-13 10:00:18.387647+00:00,BBB,10.11.100.1,CXU,5.0,23.0,2.0,0.0,,,,,,,,
398,2018-02-13 10:00:22.847626+00:00,ASA,10.11.100.1,BOM,5.0,23.0,3.17,0.0,,,,,,,,
399,2018-02-13 10:10:17.521642+00:00,BBB,10.11.100.1,DAE,5.0,23.0,1.0,0.0,,,,,,,,
400,2018-02-13 10:10:21.786720+00:00,BBB,10.11.100.1,DAE,5.0,23.0,2.42,0.0,,,,,,,,
401,2018-02-13 10:14:38.085999+00:00,BBB,10.11.100.1,CXU,4.0,23.0,0.25,0.0,,,,,,,,
402,2018-02-13 11:00:00.000000+00:00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
403,2018-02-13 12:00:00.000000+00:00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
404,2018-02-13 13:00:00.000000+00:00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
405,2018-02-13 14:00:00.000000+00:00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
406,2018-02-13 15:00:00.000000+00:00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
407,2018-02-13 16:00:00.000000+00:00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
408,2018-02-13 17:00:00.000000+00:00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
409,2018-02-13 18:00:00.000000+00:00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
410,2018-02-13 19:00:00.000000+00:00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
411,2018-02-13 20:00:00.000000+00:00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
412,2018-02-13 21:00:00.000000+00:00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
413,2018-02-13 22:00:00.000000+00:00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
414,2018-02-13 23:00:00.000000+00:00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
?
所以基本上我想要这样的东西
0
正如您所看到的那样,它会填满其余时间,并将其值保持为html2canvas.js:373 Invalid value given for Length: "auto"
。
答案 0 :(得分:1)
使用:
runfile('/path/to/script.py')