在Python中考虑二次多项式

时间:2011-02-15 01:02:04

标签: python math quadratic factorization

由于我脑子里的二次方程式因素刚刚发生,并且自从我学会了之后就已经这样做了 - 我将如何开始在Python中编写二次方因子呢?

3 个答案:

答案 0 :(得分:6)

答案 1 :(得分:5)

改善基思的答案:

以多项式P(x) = a*x^2 + b*x + c开头。 使用二次公式(或您选择的其他方法)查找根r1r2P(x) = 0

您现在可以将P(x)计算为a*(x-r1)(x-r2)


如果您的因子(3x - 4)(x - 9)解决方案将是3 *(x - 4/3)(x - 9)。 你可能想找到一种方法将3乘以因子来摆脱分数/看起来漂亮。在这种情况下,使用分数算术而不是双精度可能会有所帮助,因此您可以更好地了解分母。

答案 2 :(得分:1)

我尝试实施hugomg的方法。我在网上窃取了“gcd”和“简化分数”功能。这是我的草率方法:

from math import sqrt

def gcd(a, b):
    while b:
        a, b = b, a % b
    return a

def simplify_fraction(numer, denom):
    if denom == 0:
        return "Division by 0 - result undefined"

    # Remove greatest common divisor:
    common_divisor = gcd(numer, denom)
    (reduced_num, reduced_den) = (numer / common_divisor, denom / common_divisor)
    # Note that reduced_den > 0 as documented in the gcd function.

    if common_divisor == 1:
        return (numer, denom)
    else:
        # Bunch of nonsense to make sure denominator is negative if possible
        if (reduced_den > denom):
            if (reduced_den * reduced_num < 0):
                return(-reduced_num, -reduced_den)
            else:
                return (reduced_num, reduced_den)
        else:
            return (reduced_num, reduced_den)

def quadratic_function(a,b,c):
    if (b**2-4*a*c >= 0):
        x1 = (-b+sqrt(b**2-4*a*c))/(2*a)
        x2 = (-b-sqrt(b**2-4*a*c))/(2*a)
        # Added a "-" to these next 2 values because they would be moved to the other side of the equation
        mult1 = -x1 * a
        mult2 = -x2 * a
        (num1,den1) = simplify_fraction(a,mult1)
        (num2,den2) = simplify_fraction(a,mult2)
        if ((num1 > a) or (num2 > a)):
            # simplify fraction will make too large of num and denom to try to make a sqrt work
            print("No factorization")
        else:
            # Getting ready to make the print look nice
            if (den1 > 0):
                sign1 = "+"
            else:
                sign1 = ""
            if (den2 > 0):
                sign2 = "+"
            else:
                sign2 = ""
            print("({}x{}{})({}x{}{})".format(int(num1),sign1,int(den1),int(num2),sign2,int(den2)))
    else:
        # if the part under the sqrt is negative, you have a solution with i
        print("Solutions are imaginary")
    return

# This function takes in a, b, and c from the equation:
# ax^2 + bx + c
# and prints out the factorization if there is one

quadratic_function(7,27,-4)

如果我运行这个,我得到输出:

(7x-1)(1x+4)