由于我脑子里的二次方程式因素刚刚发生,并且自从我学会了之后就已经这样做了 - 我将如何开始在Python中编写二次方因子呢?
答案 0 :(得分:6)
答案 1 :(得分:5)
改善基思的答案:
以多项式P(x) = a*x^2 + b*x + c
开头。
使用二次公式(或您选择的其他方法)查找根r1
和r2
到P(x) = 0
。
您现在可以将P(x)计算为a*(x-r1)(x-r2)
。
如果您的因子(3x - 4)(x - 9)解决方案将是3 *(x - 4/3)(x - 9)。 你可能想找到一种方法将3乘以因子来摆脱分数/看起来漂亮。在这种情况下,使用分数算术而不是双精度可能会有所帮助,因此您可以更好地了解分母。
答案 2 :(得分:1)
我尝试实施hugomg的方法。我在网上窃取了“gcd”和“简化分数”功能。这是我的草率方法:
from math import sqrt
def gcd(a, b):
while b:
a, b = b, a % b
return a
def simplify_fraction(numer, denom):
if denom == 0:
return "Division by 0 - result undefined"
# Remove greatest common divisor:
common_divisor = gcd(numer, denom)
(reduced_num, reduced_den) = (numer / common_divisor, denom / common_divisor)
# Note that reduced_den > 0 as documented in the gcd function.
if common_divisor == 1:
return (numer, denom)
else:
# Bunch of nonsense to make sure denominator is negative if possible
if (reduced_den > denom):
if (reduced_den * reduced_num < 0):
return(-reduced_num, -reduced_den)
else:
return (reduced_num, reduced_den)
else:
return (reduced_num, reduced_den)
def quadratic_function(a,b,c):
if (b**2-4*a*c >= 0):
x1 = (-b+sqrt(b**2-4*a*c))/(2*a)
x2 = (-b-sqrt(b**2-4*a*c))/(2*a)
# Added a "-" to these next 2 values because they would be moved to the other side of the equation
mult1 = -x1 * a
mult2 = -x2 * a
(num1,den1) = simplify_fraction(a,mult1)
(num2,den2) = simplify_fraction(a,mult2)
if ((num1 > a) or (num2 > a)):
# simplify fraction will make too large of num and denom to try to make a sqrt work
print("No factorization")
else:
# Getting ready to make the print look nice
if (den1 > 0):
sign1 = "+"
else:
sign1 = ""
if (den2 > 0):
sign2 = "+"
else:
sign2 = ""
print("({}x{}{})({}x{}{})".format(int(num1),sign1,int(den1),int(num2),sign2,int(den2)))
else:
# if the part under the sqrt is negative, you have a solution with i
print("Solutions are imaginary")
return
# This function takes in a, b, and c from the equation:
# ax^2 + bx + c
# and prints out the factorization if there is one
quadratic_function(7,27,-4)
如果我运行这个,我得到输出:
(7x-1)(1x+4)