我正在学习使用bAbI数据集的keras聊天机器人使用Memory Networks。我尝试对代码进行一些修改,以便它从用户获取输入并预测答案但失败了。我想使用input()函数从用户那里获取输入,但不知道如何操作。我试过阅读.txt文件,但它没有用。
以下是keras-team的原始代码
from __future__ import print_function
from keras.models import Sequential, Model
from keras.layers.embeddings import Embedding
from keras.layers import Input, Activation, Dense, Permute, Dropout
from keras.layers import add, dot, concatenate
from keras.layers import LSTM
from keras.utils.data_utils import get_file
from keras.preprocessing.sequence import pad_sequences
from functools import reduce
import tarfile
import numpy as np
import re
def tokenize(sent):
'''Return the tokens of a sentence including punctuation.
tokenize('Bob dropped the apple. Where is the apple?')
['Bob', 'dropped', 'the', 'apple', '.', 'Where', 'is', 'the', 'apple', '?']
'''
return [x.strip() for x in re.split('(\W+)?', sent) if x.strip()]
def parse_stories(lines, only_supporting=False):
'''Parse stories provided in the bAbi tasks format
If only_supporting is true, only the sentences
that support the answer are kept.
'''
data = []
story = []
for line in lines:
line = line.decode('utf-8').strip()
nid, line = line.split(' ', 1)
nid = int(nid)
if nid == 1:
story = []
if '\t' in line:
q, a, supporting = line.split('\t')
q = tokenize(q)
substory = None
if only_supporting:
# Only select the related substory
supporting = map(int, supporting.split())
substory = [story[i - 1] for i in supporting]
else:
# Provide all the substories
substory = [x for x in story if x]
data.append((substory, q, a))
story.append('')
else:
sent = tokenize(line)
story.append(sent)
return data
def get_stories(f, only_supporting=False, max_length=None):
'''Given a file name, read the file,
retrieve the stories,
and then convert the sentences into a single story.
If max_length is supplied,
any stories longer than max_length tokens will be discarded.
'''
data = parse_stories(f.readlines(), only_supporting=only_supporting)
flatten = lambda data: reduce(lambda x, y: x + y, data)
data = [(flatten(story), q, answer) for story, q, answer in data if not max_length or len(flatten(story)) < max_length]
return data
def vectorize_stories(data, word_idx, story_maxlen, query_maxlen):
X = []
Xq = []
Y = []
for story, query, answer in data:
x = [word_idx[w] for w in story]
xq = [word_idx[w] for w in query]
# let's not forget that index 0 is reserved
y = np.zeros(len(word_idx) + 1)
y[word_idx[answer]] = 1
X.append(x)
Xq.append(xq)
Y.append(y)
return (pad_sequences(X, maxlen=story_maxlen),
pad_sequences(Xq, maxlen=query_maxlen), np.array(Y))
try:
path = get_file('babi-tasks-v1-2.tar.gz', origin='https://s3.amazonaws.com/text-datasets/babi_tasks_1-20_v1-2.tar.gz')
except:
print('Error downloading dataset, please download it manually:\n'
'$ wget http://www.thespermwhale.com/jaseweston/babi/tasks_1-20_v1-2.tar.gz\n'
'$ mv tasks_1-20_v1-2.tar.gz ~/.keras/datasets/babi-tasks-v1-2.tar.gz')
raise
tar = tarfile.open(path)
challenges = {
# QA1 with 10,000 samples
'single_supporting_fact_10k': 'tasks_1-20_v1-2/en-10k/qa1_single-supporting-fact_{}.txt',
# QA2 with 10,000 samples
'two_supporting_facts_10k': 'tasks_1-20_v1-2/en-10k/qa2_two-supporting-facts_{}.txt',
}
challenge_type = 'single_supporting_fact_10k'
challenge = challenges[challenge_type]
print('Extracting stories for the challenge:', challenge_type)
train_stories = get_stories(tar.extractfile(challenge.format('train')))
test_stories = get_stories(tar.extractfile(challenge.format('test')))
vocab = set()
for story, q, answer in train_stories + test_stories:
vocab |= set(story + q + [answer])
vocab = sorted(vocab)
# Reserve 0 for masking via pad_sequences
vocab_size = len(vocab) + 1
story_maxlen = max(map(len, (x for x, _, _ in train_stories + test_stories)))
query_maxlen = max(map(len, (x for _, x, _ in train_stories + test_stories)))
print('-')
print('Vocab size:', vocab_size, 'unique words')
print('Story max length:', story_maxlen, 'words')
print('Query max length:', query_maxlen, 'words')
print('Number of training stories:', len(train_stories))
print('Number of test stories:', len(test_stories))
print('-')
print('Here\'s what a "story" tuple looks like (input, query, answer):')
print(train_stories[1])
print('-')
print('Vectorizing the word sequences...')
word_idx = dict((c, i + 1) for i, c in enumerate(vocab))
inputs_train, queries_train, answers_train = vectorize_stories(train_stories,
word_idx,
story_maxlen,
query_maxlen)
inputs_test, queries_test, answers_test = vectorize_stories(test_stories,
word_idx,
story_maxlen,
query_maxlen)
print('-')
print('inputs: integer tensor of shape (samples, max_length)')
print('inputs_train shape:', inputs_train.shape)
print('inputs_test shape:', inputs_test.shape)
print('-')
print('queries: integer tensor of shape (samples, max_length)')
print('queries_train shape:', queries_train.shape)
print('queries_test shape:', queries_test.shape)
print('-')
print('answers: binary (1 or 0) tensor of shape (samples, vocab_size)')
print('answers_train shape:', answers_train.shape)
print('answers_test shape:', answers_test.shape)
print('-')
print('Compiling...')
# placeholders
input_sequence = Input((story_maxlen,))
question = Input((query_maxlen,))
# encoders
# embed the input sequence into a sequence of vectors
input_encoder_m = Sequential()
input_encoder_m.add(Embedding(input_dim=vocab_size,
output_dim=64))
input_encoder_m.add(Dropout(0.3))
# output: (samples, story_maxlen, embedding_dim)
# embed the input into a sequence of vectors of size query_maxlen
input_encoder_c = Sequential()
input_encoder_c.add(Embedding(input_dim=vocab_size,
output_dim=query_maxlen))
input_encoder_c.add(Dropout(0.3))
# output: (samples, story_maxlen, query_maxlen)
# embed the question into a sequence of vectors
question_encoder = Sequential()
question_encoder.add(Embedding(input_dim=vocab_size,
output_dim=64,
input_length=query_maxlen))
question_encoder.add(Dropout(0.3))
# output: (samples, query_maxlen, embedding_dim)
# encode input sequence and questions (which are indices)
# to sequences of dense vectors
input_encoded_m = input_encoder_m(input_sequence)
input_encoded_c = input_encoder_c(input_sequence)
question_encoded = question_encoder(question)
# compute a 'match' between the first input vector sequence
# and the question vector sequence
# shape: `(samples, story_maxlen, query_maxlen)`
match = dot([input_encoded_m, question_encoded], axes=(2, 2))
match = Activation('softmax')(match)
# add the match matrix with the second input vector sequence
response = add([match, input_encoded_c]) # (samples, story_maxlen, query_maxlen)
response = Permute((2, 1))(response) # (samples, query_maxlen, story_maxlen)
# concatenate the match matrix with the question vector sequence
answer = concatenate([response, question_encoded])
# the original paper uses a matrix multiplication for this reduction step.
# we choose to use a RNN instead.
answer = LSTM(32)(answer) # (samples, 32)
# one regularization layer -- more would probably be needed.
answer = Dropout(0.3)(answer)
answer = Dense(vocab_size)(answer) # (samples, vocab_size)
# we output a probability distribution over the vocabulary
answer = Activation('softmax')(answer)
# build the final model
model = Model([input_sequence, question], answer)
model.compile(optimizer='rmsprop', loss='categorical_crossentropy',
metrics=['accuracy'])
# train
model.fit([inputs_train, queries_train], answers_train,
batch_size=32,
epochs=120,
validation_data=([inputs_test, queries_test], answers_test))
model_path1 = r'model_chatbot.h5'
model.save(model_path1)
#model save as pickle file
# model load again
# write story answer question in the format in a text file
model.load_weights(model_path1)
pred_results = model.predict(([inputs_test, queries_test]))
# Display a selected test story
n = np.random.randint(0,1000)
story_list = test_stories[n][0]
story =' '.join(word for word in story_list)
print("Story is:",story)
question_list = test_stories[n][1]
ques =' '.join(word for word in question_list)
print("Question is: ",ques)
ans = test_stories[n][2]
print("Actual answer is: ", ans)
#Generate prediction from model
val_max = np.argmax(pred_results[n])
for key, val in word_idx.items():
if val == val_max:
k = key
print("Machine answer is: ", k)
print("I am ", pred_results[n][val_max], "certain of it")
如何使用input()进行输入并进行预测?