我是机器学习的新手,并且正在尝试运行一个简单的分类模型,该模型是我用pickle训练并保存的,并且在另一个格式相同的数据集上。我有以下python代码。
代码
#Training set
features = pd.read_csv('../Data/Train_sop_Computed.csv')
#Testing set
testFeatures = pd.read_csv('../Data/Test_sop_Computed.csv')
print(colored('\nThe shape of our features is:','green'), features.shape)
print(colored('\nThe shape of our Test features is:','green'), testFeatures.shape)
features = pd.get_dummies(features)
testFeatures = pd.get_dummies(testFeatures)
features.iloc[:,5:].head(5)
testFeatures.iloc[:,5].head(5)
labels = np.array(features['Truth'])
testlabels = np.array(testFeatures['Truth'])
features= features.drop('Truth', axis = 1)
testFeatures = testFeatures.drop('Truth', axis = 1)
feature_list = list(features.columns)
testFeature_list = list(testFeatures.columns)
def add_missing_dummy_columns(d, columns):
missing_cols = set(columns) - set(d.columns)
for c in missing_cols:
d[c] = 0
def fix_columns(d, columns):
add_missing_dummy_columns(d, columns)
# make sure we have all the columns we need
assert (set(columns) - set(d.columns) == set())
extra_cols = set(d.columns) - set(columns)
if extra_cols: print("extra columns:", extra_cols)
d = d[columns]
return d
testFeatures = fix_columns(testFeatures, features.columns)
features = np.array(features)
testFeatures = np.array(testFeatures)
train_samples = 100
X_train, X_test, y_train, y_test = model_selection.train_test_split(features, labels, test_size = 0.25, random_state = 42)
testX_train, textX_test, testy_train, testy_test = model_selection.train_test_split(testFeatures, testlabels, test_size= 0.25, random_state = 42)
print(colored('\n TRAINING SET','yellow'))
print(colored('\nTraining Features Shape:','magenta'), X_train.shape)
print(colored('Training Labels Shape:','magenta'), X_test.shape)
print(colored('Testing Features Shape:','magenta'), y_train.shape)
print(colored('Testing Labels Shape:','magenta'), y_test.shape)
print(colored('\n TESTING SETS','yellow'))
print(colored('\nTraining Features Shape:','magenta'), testX_train.shape)
print(colored('Training Labels Shape:','magenta'), textX_test.shape)
print(colored('Testing Features Shape:','magenta'), testy_train.shape)
print(colored('Testing Labels Shape:','magenta'), testy_test.shape)
from sklearn.metrics import precision_recall_fscore_support
import pickle
loaded_model_RFC = pickle.load(open('../other/SOPmodel_RFC', 'rb'))
result_RFC = loaded_model_RFC.score(textX_test, testy_test)
print(colored('Random Forest Classifier: ','magenta'),result_RFC)
loaded_model_SVC = pickle.load(open('../other/SOPmodel_SVC', 'rb'))
result_SVC = loaded_model_SVC.score(textX_test, testy_test)
print(colored('Support Vector Classifier: ','magenta'),result_SVC)
loaded_model_GPC = pickle.load(open('../other/SOPmodel_Gaussian', 'rb'))
result_GPC = loaded_model_GPC.score(textX_test, testy_test)
print(colored('Gaussian Process Classifier: ','magenta'),result_GPC)
loaded_model_SGD = pickle.load(open('../other/SOPmodel_SGD', 'rb'))
result_SGD = loaded_model_SGD.score(textX_test, testy_test)
print(colored('Stocastic Gradient Descent: ','magenta'),result_SGD)
我能够获得测试集的结果。
但是我面临的问题是我需要在整个
Test_sop_Computed.csv
数据集上运行模型。但是它仅在我分割的测试数据集上运行。 如果有人可以就如何在整个数据集中运行加载的模型提供任何建议,我将不胜感激。我知道下面的代码行是错误的。
testX_train, textX_test, testy_train, testy_test = model_selection.train_test_split(testFeatures, testlabels, test_size= 0.25, random_state = 42)
训练数据集和测试数据集都具有Subject
,Predicate
,Object
,Computed
和Truth
以及具有Truth
的特征作为预测的课程。测试数据集具有该Truth
列的实际值,我使用testFeatures = testFeatures.drop('Truth', axis = 1)
对其进行了处理,并打算使用各种加载的分类器模型将Truth
预测为 0 或 1 表示整个数据集,然后以数组形式获取预测。
到目前为止,我已经做到了。但是我认为我也在拆分测试数据集。有没有办法通过整个测试数据集,即使它在另一个文件中?
此测试数据集与训练集的格式相同。我已经检查了两者的形状,得到了以下内容。
确认特征和形状
Shape of the Train features is: (1860, 5)
Shape of the Test features is: (1386, 5)
TRAINING SET
Training Features Shape: (1395, 1045)
Training Labels Shape: (465, 1045)
Testing Features Shape: (1395,)
Testing Labels Shape: (465,)
TEST SETS
Training Features Shape: (1039, 1045)
Training Labels Shape: (347, 1045)
Testing Features Shape: (1039,)
Testing Labels Shape: (347,)
在这方面的任何建议将受到高度赞赏。
答案 0 :(得分:3)
您的问题尚不清楚,但据我了解,您想在 testX_train 和 testX_test (这只是 testFeatures )上运行模型>分成两个子数据集。
因此,您可以像在 testX_test 中一样在 testX_train 上运行模型。 :
result_RFC_train = loaded_model_RFC.score(textX_train, testy_train)
或者您可以删除以下行:
testX_train, textX_test, testy_train, testy_test = model_selection.train_test_split(testFeatures, testlabels, test_size= 0.25, random_state = 42)
因此,您只是不拆分数据并在完整数据集上运行它:
result_RFC_train = loaded_model_RFC.score(testFeatures, testlabels)