我正在尝试测试我的逻辑回归模型但是我得到了内存错误而无法解决它。是因为我的句子占用了太多空间吗?我将不胜感激。
我的代码中的第267行:
self.X, self.y = self.transform_to_dataset(training_sentences,_pos__sentences)
self.clf = Pipeline([
('vectorizer', DictVectorizer(sparse=False)),
('classifier', LogisticRegression())])
self.clf.fit(self.X, self.y)
运行此后我得到的错误:
Traceback (most recent call last):
File "tagger_lr_chunk.py", line 342, in <module>
tagger.train(data_dir + 'train.txt')
File "tagger_lr_chunk.py", line 271, in train
self.clf.fit(self.X, self.y)
File "/home/selub/anaconda2/lib/python2.7/site-packages/sklearn/pipeline.py", line 248, in fit
Xt, fit_params = self._fit(X, y, **fit_params)
File "/home/selub/anaconda2/lib/python2.7/site-packages/sklearn/pipeline.py", line 213, in _fit
**fit_params_steps[name])
File "/home/selub/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/memory.py", line 362, in __call__
return self.func(*args, **kwargs)
File "/home/selub/anaconda2/lib/python2.7/site-packages/sklearn/pipeline.py", line 581, in _fit_transform_one
res = transformer.fit_transform(X, y, **fit_params)
File "/home/selub/anaconda2/lib/python2.7/site-packages/sklearn/feature_extraction/dict_vectorizer.py", line 230, in fit_transform
return self._transform(X, fitting=True)
File "/home/selub/anaconda2/lib/python2.7/site-packages/sklearn/feature_extraction/dict_vectorizer.py", line 204, in _transform
result_matrix = result_matrix.toarray()
File "/home/selub/anaconda2/lib/python2.7/site-packages/scipy/sparse/compressed.py", line 943, in toarray
out = self._process_toarray_args(order, out)
File "/home/selub/anaconda2/lib/python2.7/site-packages/scipy/sparse/base.py", line 1130, in _process_toarray_args
return np.zeros(self.shape, dtype=self.dtype, order=order)
MemoryError
答案 0 :(得分:1)
我通过改变DictVectorizer的参数来解决这个记忆问题,以便生成scipy.sparse矩阵
self.X, self.y = self.transform_to_dataset(training_sentences,_pos__sentences)
self.clf = Pipeline([
('vectorizer', DictVectorizer(sparse=True)),
('classifier', LogisticRegression())])
self.clf.fit(self.X, self.y)