dplyr / rlang:带有多个表达式的parse_expr
例如,如果我想解析一些字符串变异,我可以
e1 = "vs + am"
mtcars %>% mutate(!!parse_expr(e1))
但是当我想解析任何带有“,”这样的特殊字符的文本时,它会给我一个错误,
e2 = "vs + am , am +vs"
mtcars %>% mutate(!!parse_expr(e2))
Error in parse(text = x) : <text>:1:9: unexpected ','
1: vs + am ,
^
有什么方法可以解决这个问题吗?
由于
答案 0 :(得分:4)
我们可以使用复数形式parse_exprs
和修改后的e2
表达式的三重运算符来解析多个表达式(请参阅?parse_quosures
):
说明:
e2
中的多个表达式需要由;
或新行分隔。?quasiquotation
: !!!
运算符取消引用并拼接其参数。参数应表示列表或向量。
e2 = "vs + am ; am +vs";
mtcars %>% mutate(!!!parse_exprs(e2))
# mpg cyl disp hp drat wt qsec vs am gear carb vs + am am + vs
#1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 1 1
#2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 1 1
#3 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 2 2
#4 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 1 1
#5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 0 0
#6 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 1 1
#7 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 0 0
#8 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 1 1
#9 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 1 1
#10 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 1 1
#11 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 1 1
#12 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 0 0
#13 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 0 0
#14 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 0 0
#15 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 0 0
#16 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 0 0
#17 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 0 0
#18 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 2 2
#19 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 2 2
#20 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 2 2
#21 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 1 1
#22 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 0 0
#23 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 0 0
#24 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 0 0
#25 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 0 0
#26 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 2 2
#27 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 1 1
#28 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 2 2
#29 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 1 1
#30 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 1 1
#31 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 1 1
#32 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 2 2
答案 1 :(得分:1)
你总是可以将它们分开到表达式之外,例如:
e2 = "vs + am"
e3 = "am +vs"
mtcars %>% mutate(!!parse_expr(e2),!!parse_expr(e3))
你可以使用parse_exprs
和分号而不是逗号来感谢@Maurits Evers。
!!!
获取元素列表并将它们拼接到当前调用中。
e2 = "vs + am ; am +vs"
mtcars %>% mutate(!!!parse_exprs(e2))
答案 2 :(得分:1)
这是我用来命名变量 (按Genom要求)的一些技巧
带有 2个命名表达式的示例:
JobInfo [] jobs = lstJobs.getJobs(connection, false);
List<Point> pointList = new ArrayList<Point>();
for (JobInfo job : jobs) {
log.debug("getCPUPercent: " + job.getCPUPercent());
log.debug("getCurrentUser: " + job.getCurrentUser());
log.debug("getJobName: " + job.getJobName());
log.debug("getJobType: " + job.getJobType());
log.debug("getSubsystem: " + job.getSubsystem());
log.debug("getTotalCPUUsed: " + job.getTotalCPUUsed());
log.debug("getUserName: " + job.getUserName());
log.debug("getCPUPercentInTenths: " + job.getCPUPercentInTenths());
}