让我们说我想为自定义函数中任意数量的组计算mean
,min
和max
。
玩具数据如下:
library(tidyverse)
df <- tibble(
Gender = c("m", "f", "f", "m", "m",
"f", "f", "f", "m", "f"),
IQ = rnorm(10, 100, 15),
Other = runif(10),
Test = rnorm(10),
group2 = c("A", "A", "A", "A", "A",
"B", "B", "B", "B", "B")
)
我可以使用两个组(性别,第2组)实现这一目标
df %>%
gather(Variable, Value, -c(Gender, group2)) %>%
group_by(Gender, group2, Variable) %>%
summarise(mean = mean(Value),
min = min(Value),
max = max(Value))
可以与
中的curly-curly
中新的rlang
运算符集成
descriptive_by <- function(data, group1, group2) {
data %>%
gather(Variable, Value, -c({{ group1 }}, {{ group2 }})) %>%
group_by({{ group1 }}, {{ group2 }}, Variable) %>%
summarise(mean = mean(Value),
min = min(Value),
max = max(Value))
}
通常,我会假设我可以用...
替换指定的组,但是它似乎不起作用
descriptive_by <- function(data, ...) {
data %>%
gather(Variable, Value, -c(...)) %>%
group_by(..., Variable) %>%
summarise(mean = mean(Value),
min = min(Value),
max = max(Value))
}
返回错误
map_lgl(.x,.p,...)中的错误:找不到对象“性别”
答案 0 :(得分:2)
这里是一种可能的解决方案,其中...
直接传递到group_by
,而gather
只收集数字列(因为我想它永远不应该收集非数字列。独立于输入...
的数字列)。
library(tidyverse)
set.seed(1)
## data
df <- tibble(
Gender = c("m", "f", "f", "m", "m",
"f", "f", "f", "m", "f"),
IQ = rnorm(10, 100, 15),
Other = runif(10),
Test = rnorm(10),
group2 = c("A", "A", "A", "A", "A",
"B", "B", "B", "B", "B")
)
## function
descriptive_by <- function(data, ...) {
data %>%
gather(Variable, Value, names(select_if(., is.numeric))) %>%
group_by(..., Variable) %>%
summarise(mean = mean(Value),
min = min(Value),
max = max(Value))
}
descriptive_by(df, Gender, group2)
#> # A tibble: 12 x 6
#> # Groups: Gender, group2 [4]
#> Gender group2 Variable mean min max
#> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 f A IQ 95.1 87.5 103.
#> 2 f A Other 0.432 0.212 0.652
#> 3 f A Test 0.464 -0.0162 0.944
#> 4 f B IQ 100. 87.7 111.
#> 5 f B Other 0.281 0.0134 0.386
#> 6 f B Test 0.599 0.0746 0.919
#> 7 m A IQ 106. 90.6 124.
#> 8 m A Other 0.442 0.126 0.935
#> 9 m A Test 0.457 -0.0449 0.821
#> 10 m B IQ 109. 109. 109.
#> 11 m B Other 0.870 0.870 0.870
#> 12 m B Test -1.99 -1.99 -1.99
答案 1 :(得分:1)
最复杂的部分是弄清楚如何否定NSE变量(xxx
与-xxx
)。这是我将如何处理的示例:
desc_by <- function(dat, ...) {
drops <- lapply(enquos(...), function(d) call("-", d))
dat %>%
gather(var, val, !!!drops) %>%
group_by(...) %>%
summarise_at(vars(val), funs(min, mean, max))
}
desc_by(head(iris), Species, Petal.Width)
# A tibble: 2 x 5 # Groups: Species [1] Species Petal.Width min mean max <fct> <dbl> <dbl> <dbl> <dbl> 1 setosa 0.2 1.3 3.18 5.1 2 setosa 0.4 1.7 3.67 5.4
您仍然必须使用enquos
和!!!
才能将-
应用于每个变量,否则...
可以用于分组等,而无需更改。因此,您根本不需要新的“小胡子” / curly-curly运算符。