如果我有一个定义三重损失的函数(期望y_true& y_pred作为输入参数),并且我通过以下方式“引用或调用它”:
model.compile(optimizer="rmsprop", loss=triplet_loss, metrics=[accuracy])
如何将y_pred传递给triplet_loss函数?
例如,triplet_loss函数可能是:
def triplet_loss(y_true, y_pred, alpha = 0.2):
"""
Implementation of the triplet loss function
Arguments:
y_true -- true labels, required when you define a loss in Keras,
y_pred -- python list containing three objects:
"""
anchor, positive, negative = y_pred[0], y_pred[1], y_pred[2]
# distance between the anchor and the positive
pos_dist = tf.reduce_sum(tf.square(tf.subtract(anchor,positive)))
# distance between the anchor and the negative
neg_dist = tf.reduce_sum(tf.square(tf.subtract(anchor,negative)))
# compute loss
basic_loss = pos_dist-neg_dist+alpha
loss = tf.maximum(basic_loss,0.0)
return loss
感谢Jon
答案 0 :(得分:1)
我做了一些探索keras源代码。在Model()
课程中:
首先,他们稍微修改一下这个功能以考虑权重:
self.loss_functions = loss_functions
weighted_losses = [_weighted_masked_objective(fn) for fn in loss_functions]
稍后在训练期间,他们将输出(预测)映射到目标(标签)并调用loss函数以获得output_loss。这里y_true和y_pred被传递到你的函数中。
y_true = self.targets[i]
y_pred = self.outputs[i]
weighted_loss = weighted_losses[i]
sample_weight = sample_weights[i]
mask = masks[i]
loss_weight = loss_weights_list[i]
with K.name_scope(self.output_names[i] + '_loss'):
output_loss = weighted_loss(y_true, y_pred,
sample_weight, mask)