我想将函数tf.metrics.mean_iou
用于FCN进行语义分段。它只有在IoU之前计算混淆矩阵时才有效,否则返回0.
这是我的例子:
此示例返回正确的值0.66071427
import tensorflow as tf
import numpy as np
y_pred0 = np.array([ [ [[0.9,0.1],[0.9,0.1],[0.9,0.1],[0.9,0.1]], [[0.2,0.8],[0.2,0.8],[0.2,0.8],[0.9,0.1]], [[0.9,0.1],[0.9,0.1],[0.2,0.8],[0.9,0.1]], [[0.9,0.1],[0.9,0.1],[0.2,0.8],[0.9,0.1]] ], [ [[0.9,0.1],[0.9,0.1],[0.9,0.1],[0.9,0.1]], [[0.2,0.8],[0.2,0.8],[0.2,0.8],[0.9,0.1]], [[0.9,0.1],[0.9,0.1],[0.2,0.8],[0.9,0.1]], [[0.9,0.1],[0.9,0.1],[0.2,0.8],[0.9,0.1]] ] ])
y_pred1 = tf.constant(y_pred0)
y_pred2 = tf.argmax(y_pred1, axis=3)
y_label = np.array([[[1,0,1,0],[1,0,1,0],[0,0,1,0],[0,0,1,0]], [[1,0,1,0],[1,0,1,0],[0,0,1,0],[0,0,1,0]]])
y_label2 = tf.constant(y_label)
iou, conf_mat = tf.metrics.mean_iou(y_label2, y_pred2, num_classes=2)
sess = tf.Session()
sess.run(tf.local_variables_initializer())
sess.run(tf.global_variables_initializer())
sess.run(conf_mat)
res = sess.run(iou)
print(res)
此示例返回0
import tensorflow as tf
import numpy as np
def intersection_over_union(prediction, labels):
pred = tf.argmax(prediction, axis=3)
labl = tf.constant(labels)
iou, conf_mat = tf.metrics.mean_iou(labl, pred, num_classes=2)
return iou
y_pred0 = np.array([ [ [[0.9,0.1],[0.9,0.1],[0.9,0.1],[0.9,0.1]], [[0.2,0.8],[0.2,0.8],[0.2,0.8],[0.9,0.1]], [[0.9,0.1],[0.9,0.1],[0.2,0.8],[0.9,0.1]], [[0.9,0.1],[0.9,0.1],[0.2,0.8],[0.9,0.1]] ], [ [[0.9,0.1],[0.9,0.1],[0.9,0.1],[0.9,0.1]], [[0.2,0.8],[0.2,0.8],[0.2,0.8],[0.9,0.1]], [[0.9,0.1],[0.9,0.1],[0.2,0.8],[0.9,0.1]], [[0.9,0.1],[0.9,0.1],[0.2,0.8],[0.9,0.1]] ] ])
y_pred1 = tf.constant(y_pred0)
y_label = np.array([[[1,0,1,0],[1,0,1,0],[0,0,1,0],[0,0,1,0]], [[1,0,1,0],[1,0,1,0],[0,0,1,0],[0,0,1,0]]])
mean__iou = intersection_over_union(y_pred1, y_label)
sess = tf.Session()
sess.run(tf.local_variables_initializer())
sess.run(tf.global_variables_initializer())
res = sess.run(mean__iou)
print(res)
有一个函数计算平均IoU而不初始化其中的所有变量将是非常好的。有没有办法解决第二个例子?我认为问题在于同时计算IoU和混淆矩阵,我没有找到另一种方法,因为通过Session()单独运行它们。
由于
答案 0 :(得分:1)
在从张量获取iou值之前,您需要运行tf.metrics.mean_iou
返回的更新操作。
这是固定代码:
import tensorflow as tf
import numpy as np
def intersection_over_union(prediction, labels):
pred = tf.argmax(prediction, axis=3)
labl = tf.constant(labels)
iou, conf_mat = tf.metrics.mean_iou(labl, pred, num_classes=2)
return iou, conf_mat
y_pred0 = np.array([ [ [[0.9,0.1],[0.9,0.1],[0.9,0.1],[0.9,0.1]], [[0.2,0.8],[0.2,0.8],[0.2,0.8],[0.9,0.1]], [[0.9,0.1],[0.9,0.1],[0.2,0.8],[0.9,0.1]], [[0.9,0.1],[0.9,0.1],[0.2,0.8],[0.9,0.1]] ], [ [[0.9,0.1],[0.9,0.1],[0.9,0.1],[0.9,0.1]], [[0.2,0.8],[0.2,0.8],[0.2,0.8],[0.9,0.1]], [[0.9,0.1],[0.9,0.1],[0.2,0.8],[0.9,0.1]], [[0.9,0.1],[0.9,0.1],[0.2,0.8],[0.9,0.1]] ] ])
y_pred1 = tf.constant(y_pred0)
y_label = np.array([[[1,0,1,0],[1,0,1,0],[0,0,1,0],[0,0,1,0]], [[1,0,1,0],[1,0,1,0],[0,0,1,0],[0,0,1,0]]])
mean__iou, conf_mat = intersection_over_union(y_pred1, y_label)
sess = tf.Session()
sess.run(tf.local_variables_initializer())
sess.run(tf.global_variables_initializer())
sess.run([conf_mat])
res = sess.run(mean__iou)
print(res)
哪个返回正确的值:0.66071427