您好,
我正在尝试对每个组进行线性回归。你可以在图片上看到每个小组都有一个索引。第1-3列是度量,我的分组列是4,5,6,7,8(存储在名称中)。
我的代码:
grup=setDT(data)[,.("1" = coef(lm(data$`3`~data$id))[1] ) ,by=name]
第4,5,6,7,8列的分组效果很好,第3列的回归没有。 我希望每个组都有回归,如果只有一个值,则应该是1 =没有增加或减少。相反,我为每一行获得相同的值,似乎回归遍历所有行,它只能针对特定组的行。
我用Google搜索了我的**但似乎太傻了,因为我的眼睛开始燃烧。 谢谢你的帮助
以javascript格式输入dput(head(data)),否则会剪切引号:
structure(list(`1` = c(0, 0, 0, 0, 1, 0), `2` = c(0, 0, 0, 0,
0, 0), `3` = c(1, 1, 1, 1, 0, 1), `4` = structure(c(1L, 2L, 2L,
2L, 2L, 2L), .Label = c("2012", "2013", "2014", "2015", "2016",
"2017", "2018"), class = "factor"), `5` = structure(c(3L, 10L,
10L, 10L, 11L, 6L), .Label = c("1", "2", "3", "4", "5", "6",
"7", "8", "9", "10", "11", "12"), class = "factor"), `6` = structure(c(3L,
3L, 3L, 4L, 1L, 3L), .Label = c("1", "2", "3", "4", "5"), class = "factor"),
`7` = structure(c(4L, 1L, 3L, 4L, 6L, 4L), .Label = c("1",
"2", "3", "4", "5", "6", "7"), class = "factor"), `8` = structure(c(2L,
11L, 2L, 14L, 14L, 17L), .Label = c("11437", "12909", "40268",
"41238", "50836", "53001", "61709", "63415", "63567", "70304",
"71021", "81235", "1054443", "1065956", "1145941", "1186771",
"1189641", "1225376", "1281473", "1281531", "1281596", "1281654",
"1281768", "1281853", "1282081", "1282376", "1282425", "1282651",
"1282670", "1285816", "1297919", "1308960", "1311044", "1316212",
"1316362", "1325671", "1325680", "1325901", "1325910", "1334101",
"1338894", "1352983", "1362135", "1380554", "1380708", "1381162",
"1386511", "1401174", "1408423", "1408591", "1440882", "1446908",
"1449593", "1452093", "1463465", "1471795", "1472159", "1472195",
"1472888", "1484790", "1495375", "1499622", "1506430", "1513572",
"1531186", "1533126", "1535008", "1543251", "1595502"), class = "factor"),
`9` = structure(c(22L, 8L, 8L, 22L, 8L, 17L), .Label = c("6",
"17", "22", "27", "30", "37", "43", "48", "57", "58", "66",
"71", "92", "99", "103", "109", "182", "362", "556", "742",
"746", "747", "811", "849", "940", "944", "957", "959", "963",
"969", "972", "975", "980", "982", "985", "990", "999", "1023",
"1029", "1034", "1283", "9999"), class = "factor"), `10` = structure(c(13L,
13L, 13L, 19L, 19L, 14L), .Label = c("27", "30", "49", "50",
"51", "52", "53", "57", "58", "60", "61", "63", "73", "74",
"76", "91", "97", "9024", "9025"), class = "factor"), `11` = structure(c(3L,
3L, 3L, 3L, 3L, 4L), .Label = c("1", "2", "3", "4", "5",
"10", "12"), class = "factor"), `12` = structure(c(5L, 7L,
5L, 7L, 5L, 5L), .Label = c("10", "20", "30", "40", "50",
"60", "70", "80", "90", "100", "110", "120", "130", "140",
"150", "160", "200", "220"), class = "factor"), `13` = structure(c(12L,
6L, 12L, 10L, 9L, 8L), .Label = c("15", "15_20", "20_25",
"25_30", "30_35", "35_40", "40_45", "45_50", "50_55", "55_60",
"60_65", "65_70", "70_75", "75_80", "80_85", "85"), class = "factor"),
id = c(1L, 1L, 1L, 1L, 1L, 1L)), .Names = c("1", "2", "3",
"4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "id"), vars = c("4",
"5", "6", "7", "8"), labels = structure(list(`4` = structure(c(1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L), .Label = c("2012", "2013", "2014", "2015", "2016", "2017",
"2018"), class = "factor"), `5` = structure(c(3L, 6L, 6L, 6L,
8L, 9L, 9L, 10L, 10L, 10L, 11L, 1L, 4L, 5L, 5L, 6L, 6L, 6L, 7L,
7L, 7L, 7L, 8L, 8L, 9L, 10L, 11L, 11L, 12L, 12L, 12L, 12L, 1L,
1L, 2L, 2L, 4L, 4L, 4L, 4L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 7L, 7L, 7L, 7L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L,
10L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 1L, 1L, 1L, 1L,
2L, 2L, 3L, 3L, 4L, 4L, 6L, 6L, 6L, 7L, 7L, 7L, 8L, 8L, 8L, 8L,
9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L,
11L, 11L, 12L, 12L, 12L, 12L, 12L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L), .Label = c("1", "2", "3", "4",
"5", "6", "7", "8", "9", "10", "11", "12"), class = "factor"),
`6` = structure(c(3L, 3L, 3L, 4L, 1L, 1L, 4L, 3L, 3L, 4L,
1L, 2L, 2L, 1L, 5L, 1L, 4L, 4L, 1L, 1L, 3L, 5L, 3L, 4L, 5L,
4L, 1L, 3L, 2L, 2L, 3L, 4L, 2L, 3L, 3L, 4L, 2L, 2L, 3L, 5L,
1L, 1L, 2L, 2L, 2L, 3L, 3L, 4L, 4L, 5L, 1L, 2L, 2L, 3L, 5L,
2L, 3L, 3L, 3L, 3L, 5L, 5L, 2L, 2L, 4L, 1L, 1L, 2L, 4L, 1L,
1L, 2L, 5L, 1L, 1L, 4L, 4L, 3L, 3L, 2L, 2L, 3L, 4L, 1L, 1L,
4L, 2L, 3L, 4L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 4L, 1L, 3L, 3L,
3L, 4L, 4L, 5L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 3L, 1L, 1L,
1L, 1L, 1L, 2L, 3L, 3L, 3L, 4L, 4L, 1L, 1L, 2L, 2L, 2L, 3L,
3L, 4L, 4L, 4L, 4L, 1L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L,
5L, 5L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L,
5L, 5L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L,
4L, 4L, 1L, 1L, 1L, 1L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L,
4L, 4L, 5L, 5L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L,
4L, 4L, 4L, 4L, 5L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 2L, 2L, 2L, 3L, 3L, 3L,
3L, 4L, 4L, 4L, 5L, 5L, 5L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L,
5L, 5L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 4L, 4L, 4L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 1L, 1L,
2L, 2L), .Label = c("1", "2", "3", "4", "5"), class = "factor"),
`7` = structure(c(4L, 4L, 5L, 1L, 2L, 2L, 1L, 1L, 3L, 4L,
6L, 5L, 1L, 5L, 4L, 4L, 1L, 4L, 3L, 5L, 3L, 3L, 5L, 4L, 1L,
3L, 4L, 5L, 2L, 5L, 4L, 3L, 6L, 2L, 6L, 2L, 1L, 6L, 1L, 4L,
5L, 5L, 2L, 4L, 5L, 1L, 3L, 2L, 5L, 1L, 5L, 1L, 1L, 3L, 7L,
1L, 1L, 2L, 3L, 5L, 2L, 3L, 1L, 3L, 4L, 1L, 2L, 4L, 5L, 1L,
5L, 2L, 3L, 2L, 3L, 1L, 4L, 4L, 6L, 2L, 4L, 5L, 1L, 2L, 3L,
3L, 1L, 2L, 1L, 1L, 1L, 3L, 4L, 1L, 1L, 2L, 2L, 3L, 2L, 3L,
5L, 1L, 3L, 1L, 2L, 1L, 2L, 5L, 1L, 3L, 3L, 1L, 1L, 2L, 2L,
3L, 4L, 5L, 5L, 1L, 4L, 5L, 1L, 4L, 1L, 3L, 2L, 3L, 4L, 1L,
2L, 1L, 1L, 3L, 5L, 7L, 1L, 5L, 2L, 2L, 3L, 4L, 5L, 1L, 1L,
4L, 5L, 1L, 1L, 4L, 1L, 2L, 4L, 4L, 6L, 2L, 2L, 3L, 2L, 3L,
3L, 4L, 4L, 2L, 2L, 3L, 3L, 4L, 6L, 3L, 4L, 4L, 5L, 5L, 4L,
1L, 2L, 1L, 1L, 2L, 2L, 3L, 4L, 3L, 3L, 4L, 4L, 1L, 2L, 4L,
2L, 3L, 1L, 2L, 4L, 5L, 2L, 3L, 1L, 2L, 4L, 4L, 5L, 1L, 1L,
3L, 5L, 1L, 1L, 1L, 2L, 4L, 5L, 1L, 3L, 3L, 1L, 3L, 4L, 3L,
3L, 4L, 6L, 6L, 4L, 1L, 1L, 4L, 1L, 1L, 1L, 3L, 4L, 5L, 1L,
1L, 1L, 2L, 4L, 7L, 3L, 5L, 5L, 1L, 1L, 3L, 5L, 1L, 3L, 5L,
5L, 1L, 3L, 4L, 1L, 2L, 7L, 2L, 3L, 5L, 5L, 6L, 1L, 1L, 4L,
5L, 5L, 1L, 3L, 5L, 5L, 2L, 4L, 4L, 3L, 1L, 1L, 2L, 3L, 4L,
4L, 1L, 3L, 4L, 5L, 1L, 1L, 2L, 4L, 6L, 6L, 1L, 1L, 1L, 2L,
5L, 6L, 3L, 5L, 1L, 1L, 2L, 2L, 3L, 6L, 7L, 2L, 4L, 5L, 6L,
7L, 1L, 1L, 1L, 1L, 3L, 4L, 4L, 5L, 5L, 1L, 1L, 3L, 3L, 3L,
3L, 4L, 5L, 4L, 5L, 5L, 1L, 4L, 1L, 1L, 2L, 1L, 1L, 1L, 3L,
1L, 1L, 2L, 3L, 3L, 5L, 5L, 6L, 1L, 3L, 1L, 1L, 2L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 4L, 3L, 5L,
1L, 2L), .Label = c("1", "2", "3", "4", "5", "6", "7"), class = "factor"),
`8` = structure(c(2L, 17L, 17L, 17L, 14L, 6L, 16L, 11L, 2L,
14L, 14L, 3L, 8L, 7L, 16L, 15L, 14L, 14L, 16L, 22L, 27L,
16L, 29L, 29L, 16L, 18L, 29L, 18L, 22L, 16L, 21L, 32L, 21L,
19L, 27L, 29L, 16L, 18L, 13L, 41L, 17L, 22L, 30L, 38L, 38L,
9L, 21L, 38L, 41L, 16L, 24L, 33L, 36L, 18L, 38L, 25L, 18L,
29L, 22L, 26L, 21L, 29L, 22L, 22L, 16L, 47L, 23L, 19L, 22L,
16L, 20L, 5L, 37L, 19L, 26L, 31L, 31L, 10L, 36L, 16L, 16L,
30L, 16L, 36L, 42L, 28L, 40L, 35L, 49L, 1L, 22L, 49L, 51L,
49L, 49L, 40L, 49L, 49L, 30L, 16L, 18L, 49L, 20L, 49L, 22L,
49L, 16L, 49L, 12L, 26L, 49L, 49L, 47L, 20L, 49L, 45L, 26L,
53L, 53L, 53L, 53L, 53L, 13L, 53L, 49L, 53L, 53L, 53L, 53L,
16L, 53L, 49L, 53L, 53L, 53L, 35L, 19L, 49L, 22L, 49L, 49L,
53L, 53L, 49L, 61L, 53L, 49L, 31L, 49L, 53L, 53L, 53L, 49L,
53L, 18L, 49L, 53L, 53L, 16L, 49L, 53L, 29L, 49L, 34L, 49L,
37L, 53L, 37L, 53L, 64L, 19L, 20L, 49L, 53L, 49L, 51L, 49L,
14L, 53L, 53L, 64L, 49L, 49L, 53L, 54L, 49L, 53L, 14L, 49L,
53L, 51L, 37L, 49L, 49L, 53L, 37L, 49L, 53L, 53L, 53L, 49L,
51L, 53L, 49L, 53L, 26L, 53L, 49L, 53L, 49L, 49L, 49L, 53L,
49L, 49L, 60L, 19L, 49L, 49L, 24L, 53L, 53L, 49L, 53L, 53L,
26L, 49L, 49L, 24L, 49L, 53L, 49L, 53L, 16L, 19L, 50L, 53L,
63L, 49L, 53L, 16L, 49L, 53L, 47L, 53L, 49L, 53L, 53L, 49L,
48L, 53L, 49L, 49L, 49L, 53L, 63L, 49L, 49L, 53L, 49L, 53L,
53L, 22L, 53L, 49L, 53L, 68L, 62L, 49L, 49L, 53L, 53L, 49L,
53L, 53L, 53L, 59L, 49L, 53L, 49L, 53L, 51L, 19L, 53L, 53L,
49L, 53L, 49L, 52L, 22L, 31L, 37L, 47L, 49L, 31L, 53L, 49L,
39L, 53L, 26L, 49L, 53L, 55L, 53L, 53L, 53L, 49L, 53L, 53L,
49L, 49L, 45L, 49L, 53L, 57L, 49L, 49L, 50L, 42L, 53L, 4L,
49L, 49L, 53L, 53L, 57L, 53L, 65L, 53L, 26L, 49L, 49L, 53L,
26L, 37L, 49L, 43L, 53L, 67L, 49L, 44L, 49L, 53L, 46L, 53L,
49L, 53L, 49L, 68L, 49L, 58L, 66L, 49L, 1L, 2L, 5L, 8L, 9L,
16L, 17L, 18L, 19L, 20L, 21L, 22L, 24L, 25L, 27L, 29L, 33L,
34L, 36L, 38L, 39L, 41L, 47L, 49L, 53L, 54L, 55L, 64L, 68L,
49L, 56L, 69L, 58L, 53L), .Label = c("11437", "12909", "40268",
"41238", "50836", "53001", "61709", "63415", "63567", "70304",
"71021", "81235", "1054443", "1065956", "1145941", "1186771",
"1189641", "1225376", "1281473", "1281531", "1281596", "1281654",
"1281768", "1281853", "1282081", "1282376", "1282425", "1282651",
"1282670", "1285816", "1297919", "1308960", "1311044", "1316212",
"1316362", "1325671", "1325680", "1325901", "1325910", "1334101",
"1338894", "1352983", "1362135", "1380554", "1380708", "1381162",
"1386511", "1401174", "1408423", "1408591", "1440882", "1446908",
"1449593", "1452093", "1463465", "1471795", "1472159", "1472195",
"1472888", "1484790", "1495375", "1499622", "1506430", "1513572",
"1531186", "1533126", "1535008", "1543251", "1595502"), class = "factor")), row.names = c(NA,
-387L), class = "data.frame", vars = c("4", "5", "6", "7", "8"
), drop = TRUE, .Names = c("4", "5", "6", "7", "8")), indices = list(
0L, 5:6, 7:11, 12:24, 25L, 26:27, 28L, 1L, 2L, 3L, 4L, 29L,
37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L,
49L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 50:51, 52L, 64L,
65L, 66L, 67L, 68L, 69L, 70L, 71L, 72L, 73L, 74L, 75:76,
77L, 78L, 79L, 80L, 81L, 82L, 83L, 84L, 85L, 86L, 87:88,
89L, 90L, 91L, 92L, 93L, 53L, 54L, 55L, 56L, 57L, 58L, 59L,
60L, 61L, 62L, 63L, 94L, 95L, 96L, 97L, 114L, 115L, 116L,
117L, 118L, 119L, 120L, 121L, 122L, 123L, 124L, 125L, 126L,
127L, 128L, 129L, 130L, 131L, 132L, 133L, 98L, 99L, 100L,
101L, 102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L,
111L, 112L, 113L, 134L, 135L, 136L, 137L, 138L, 139L, 140L,
141L, 142L, 143L, 144L, 207L, 208L, 209L, 210L, 211:212,
213L, 214L, 215L, 216L, 217L, 218L, 219L, 220L, 221L, 222L,
223L, 224L, 225L, 226L, 227L, 228L, 229:230, 231:232, 233L,
234L, 235L, 236L, 237L, 238:239, 240L, 241L, 242L, 243L,
244L, 245L, 246L, 247L, 248L, 249L, 250L, 251L, 252L, 253:254,
255L, 256L, 257L, 258L, 259L, 260L, 261L, 262:263, 264L,
265L, 266L, 267L, 268:269, 270L, 271L, 272L, 273L, 274L,
275L, 276:277, 278L, 279L, 280:281, 282L, 283L, 284L, 285:286,
287L, 288L, 289L, 290L, 291L, 292L, 293L, 294L, 295L, 296L,
297L, 298L, 299L, 300L, 301L, 302L, 303L, 304L, 305L, 306L,
307:308, 309L, 310L, 311L, 312L, 313L, 314L, 315L, 316L,
317L, 318:320, 321L, 322L, 323L, 324L, 325L, 326L, 327L,
328L, 329L, 330L, 331L, 332:333, 334L, 335:337, 338L, 339L,
340L, 341L, 145L, 146:147, 148L, 149L, 150L, 151L, 152L,
153L, 154L, 155L, 156L, 157L, 158L, 159L, 160L, 161L, 162L,
163L, 164L, 165L, 166L, 167L, 168L, 169L, 170L, 171L, 172L,
173L, 174:175, 176L, 177L, 178L, 179L, 180L, 181:182, 183L,
184L, 185L, 186L, 187:188, 189L, 190:191, 192L, 193L, 194L,
195L, 196L, 197L, 198L, 199L, 200:201, 202L, 203L, 204:206,
342L, 343L, 344:345, 346L, 347L, 348L, 349L, 350L, 351L,
352L, 353L, 354L, 355L, 356L, 357L, 358L, 359L, 360L, 361L,
362L, 363L, 364L, 365L, 367L, 366L, 368L, 369:370, 371L,
372L, 373L, 374L, 375:376, 377L, 378L, 379:380, 381L, 382L,
383L, 384L, 385L, 386L, 387L, 388L, 389L, 390L, 391L, 392L,
393L, 394:396, 397L, 398L, 399L, 400L, 401L, 402L, 403L,
404L, 440L, 485L, 486L, 487:488, 405:406, 407:425, 426:427,
428L, 429:430, 431:432, 433:434, 435L, 436L, 437L, 438:439,
441L, 442L, 443L, 444:445, 446L, 447L, 448L, 449:467, 468:480,
481L, 482L, 483L, 484L, 489L, 490L, 491L, 492L, 493L), drop = TRUE, group_sizes = c(1L,
2L, 5L, 13L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L,
1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 3L, 1L,
1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 3L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 19L, 2L, 1L, 2L, 2L, 2L, 1L, 1L,
1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 19L, 13L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L), biggest_group_size = 19L, .internal.selfref = <pointer: (nil)>, row.names = c(NA,
6L), class = c("data.table", "data.frame"))