每组R回归不是总数

时间:2018-04-13 22:01:38

标签: r group-by regression aggregation

picture

您好,

我正在尝试对每个组进行线性回归。你可以在图片上看到每个小组都有一个索引。第1-3列是度量,我的分组列是4,5,6,7,8(存储在名称中)。

我的代码:

grup=setDT(data)[,.("1" = coef(lm(data$`3`~data$id))[1]  ) ,by=name]

第4,5,6,7,8列的分组效果很好,第3列的回归没有。 我希望每个组都有回归,如果只有一个值,则应该是1 =没有增加或减少。相反,我为每一行获得相同的值,似乎回归遍历所有行,它只能针对特定组的行。

我用Google搜索了我的**但似乎太傻了,因为我的眼睛开始燃烧。 谢谢你的帮助

以javascript格式输入dput(head(data)),否则会剪切引号:

structure(list(`1` = c(0, 0, 0, 0, 1, 0), `2` = c(0, 0, 0, 0, 
0, 0), `3` = c(1, 1, 1, 1, 0, 1), `4` = structure(c(1L, 2L, 2L, 
2L, 2L, 2L), .Label = c("2012", "2013", "2014", "2015", "2016", 
"2017", "2018"), class = "factor"), `5` = structure(c(3L, 10L, 
10L, 10L, 11L, 6L), .Label = c("1", "2", "3", "4", "5", "6", 
"7", "8", "9", "10", "11", "12"), class = "factor"), `6` = structure(c(3L, 
3L, 3L, 4L, 1L, 3L), .Label = c("1", "2", "3", "4", "5"), class = "factor"), 
    `7` = structure(c(4L, 1L, 3L, 4L, 6L, 4L), .Label = c("1", 
    "2", "3", "4", "5", "6", "7"), class = "factor"), `8` = structure(c(2L, 
    11L, 2L, 14L, 14L, 17L), .Label = c("11437", "12909", "40268", 
    "41238", "50836", "53001", "61709", "63415", "63567", "70304", 
    "71021", "81235", "1054443", "1065956", "1145941", "1186771", 
    "1189641", "1225376", "1281473", "1281531", "1281596", "1281654", 
    "1281768", "1281853", "1282081", "1282376", "1282425", "1282651", 
    "1282670", "1285816", "1297919", "1308960", "1311044", "1316212", 
    "1316362", "1325671", "1325680", "1325901", "1325910", "1334101", 
    "1338894", "1352983", "1362135", "1380554", "1380708", "1381162", 
    "1386511", "1401174", "1408423", "1408591", "1440882", "1446908", 
    "1449593", "1452093", "1463465", "1471795", "1472159", "1472195", 
    "1472888", "1484790", "1495375", "1499622", "1506430", "1513572", 
    "1531186", "1533126", "1535008", "1543251", "1595502"), class = "factor"), 
    `9` = structure(c(22L, 8L, 8L, 22L, 8L, 17L), .Label = c("6", 
    "17", "22", "27", "30", "37", "43", "48", "57", "58", "66", 
    "71", "92", "99", "103", "109", "182", "362", "556", "742", 
    "746", "747", "811", "849", "940", "944", "957", "959", "963", 
    "969", "972", "975", "980", "982", "985", "990", "999", "1023", 
    "1029", "1034", "1283", "9999"), class = "factor"), `10` = structure(c(13L, 
    13L, 13L, 19L, 19L, 14L), .Label = c("27", "30", "49", "50", 
    "51", "52", "53", "57", "58", "60", "61", "63", "73", "74", 
    "76", "91", "97", "9024", "9025"), class = "factor"), `11` = structure(c(3L, 
    3L, 3L, 3L, 3L, 4L), .Label = c("1", "2", "3", "4", "5", 
    "10", "12"), class = "factor"), `12` = structure(c(5L, 7L, 
    5L, 7L, 5L, 5L), .Label = c("10", "20", "30", "40", "50", 
    "60", "70", "80", "90", "100", "110", "120", "130", "140", 
    "150", "160", "200", "220"), class = "factor"), `13` = structure(c(12L, 
    6L, 12L, 10L, 9L, 8L), .Label = c("15", "15_20", "20_25", 
    "25_30", "30_35", "35_40", "40_45", "45_50", "50_55", "55_60", 
    "60_65", "65_70", "70_75", "75_80", "80_85", "85"), class = "factor"), 
    id = c(1L, 1L, 1L, 1L, 1L, 1L)), .Names = c("1", "2", "3", 
"4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "id"), vars = c("4", 
"5", "6", "7", "8"), labels = structure(list(`4` = structure(c(1L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L), .Label = c("2012", "2013", "2014", "2015", "2016", "2017", 
"2018"), class = "factor"), `5` = structure(c(3L, 6L, 6L, 6L, 
8L, 9L, 9L, 10L, 10L, 10L, 11L, 1L, 4L, 5L, 5L, 6L, 6L, 6L, 7L, 
7L, 7L, 7L, 8L, 8L, 9L, 10L, 11L, 11L, 12L, 12L, 12L, 12L, 1L, 
1L, 2L, 2L, 4L, 4L, 4L, 4L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 7L, 7L, 7L, 7L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 
10L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 1L, 1L, 1L, 1L, 
2L, 2L, 3L, 3L, 4L, 4L, 6L, 6L, 6L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 
9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, 
11L, 11L, 12L, 12L, 12L, 12L, 12L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, 11L, 
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 
11L, 11L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L), .Label = c("1", "2", "3", "4", 
"5", "6", "7", "8", "9", "10", "11", "12"), class = "factor"), 
    `6` = structure(c(3L, 3L, 3L, 4L, 1L, 1L, 4L, 3L, 3L, 4L, 
    1L, 2L, 2L, 1L, 5L, 1L, 4L, 4L, 1L, 1L, 3L, 5L, 3L, 4L, 5L, 
    4L, 1L, 3L, 2L, 2L, 3L, 4L, 2L, 3L, 3L, 4L, 2L, 2L, 3L, 5L, 
    1L, 1L, 2L, 2L, 2L, 3L, 3L, 4L, 4L, 5L, 1L, 2L, 2L, 3L, 5L, 
    2L, 3L, 3L, 3L, 3L, 5L, 5L, 2L, 2L, 4L, 1L, 1L, 2L, 4L, 1L, 
    1L, 2L, 5L, 1L, 1L, 4L, 4L, 3L, 3L, 2L, 2L, 3L, 4L, 1L, 1L, 
    4L, 2L, 3L, 4L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 4L, 1L, 3L, 3L, 
    3L, 4L, 4L, 5L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 3L, 1L, 1L, 
    1L, 1L, 1L, 2L, 3L, 3L, 3L, 4L, 4L, 1L, 1L, 2L, 2L, 2L, 3L, 
    3L, 4L, 4L, 4L, 4L, 1L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 
    5L, 5L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 1L, 1L, 
    1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 
    5L, 5L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 
    4L, 4L, 1L, 1L, 1L, 1L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 
    4L, 4L, 5L, 5L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 
    4L, 4L, 4L, 4L, 5L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 
    3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 
    3L, 4L, 4L, 4L, 5L, 5L, 5L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 
    2L, 2L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 1L, 1L, 1L, 1L, 1L, 
    1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 
    5L, 5L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 
    3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 1L, 
    1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 1L, 1L, 
    2L, 2L), .Label = c("1", "2", "3", "4", "5"), class = "factor"), 
    `7` = structure(c(4L, 4L, 5L, 1L, 2L, 2L, 1L, 1L, 3L, 4L, 
    6L, 5L, 1L, 5L, 4L, 4L, 1L, 4L, 3L, 5L, 3L, 3L, 5L, 4L, 1L, 
    3L, 4L, 5L, 2L, 5L, 4L, 3L, 6L, 2L, 6L, 2L, 1L, 6L, 1L, 4L, 
    5L, 5L, 2L, 4L, 5L, 1L, 3L, 2L, 5L, 1L, 5L, 1L, 1L, 3L, 7L, 
    1L, 1L, 2L, 3L, 5L, 2L, 3L, 1L, 3L, 4L, 1L, 2L, 4L, 5L, 1L, 
    5L, 2L, 3L, 2L, 3L, 1L, 4L, 4L, 6L, 2L, 4L, 5L, 1L, 2L, 3L, 
    3L, 1L, 2L, 1L, 1L, 1L, 3L, 4L, 1L, 1L, 2L, 2L, 3L, 2L, 3L, 
    5L, 1L, 3L, 1L, 2L, 1L, 2L, 5L, 1L, 3L, 3L, 1L, 1L, 2L, 2L, 
    3L, 4L, 5L, 5L, 1L, 4L, 5L, 1L, 4L, 1L, 3L, 2L, 3L, 4L, 1L, 
    2L, 1L, 1L, 3L, 5L, 7L, 1L, 5L, 2L, 2L, 3L, 4L, 5L, 1L, 1L, 
    4L, 5L, 1L, 1L, 4L, 1L, 2L, 4L, 4L, 6L, 2L, 2L, 3L, 2L, 3L, 
    3L, 4L, 4L, 2L, 2L, 3L, 3L, 4L, 6L, 3L, 4L, 4L, 5L, 5L, 4L, 
    1L, 2L, 1L, 1L, 2L, 2L, 3L, 4L, 3L, 3L, 4L, 4L, 1L, 2L, 4L, 
    2L, 3L, 1L, 2L, 4L, 5L, 2L, 3L, 1L, 2L, 4L, 4L, 5L, 1L, 1L, 
    3L, 5L, 1L, 1L, 1L, 2L, 4L, 5L, 1L, 3L, 3L, 1L, 3L, 4L, 3L, 
    3L, 4L, 6L, 6L, 4L, 1L, 1L, 4L, 1L, 1L, 1L, 3L, 4L, 5L, 1L, 
    1L, 1L, 2L, 4L, 7L, 3L, 5L, 5L, 1L, 1L, 3L, 5L, 1L, 3L, 5L, 
    5L, 1L, 3L, 4L, 1L, 2L, 7L, 2L, 3L, 5L, 5L, 6L, 1L, 1L, 4L, 
    5L, 5L, 1L, 3L, 5L, 5L, 2L, 4L, 4L, 3L, 1L, 1L, 2L, 3L, 4L, 
    4L, 1L, 3L, 4L, 5L, 1L, 1L, 2L, 4L, 6L, 6L, 1L, 1L, 1L, 2L, 
    5L, 6L, 3L, 5L, 1L, 1L, 2L, 2L, 3L, 6L, 7L, 2L, 4L, 5L, 6L, 
    7L, 1L, 1L, 1L, 1L, 3L, 4L, 4L, 5L, 5L, 1L, 1L, 3L, 3L, 3L, 
    3L, 4L, 5L, 4L, 5L, 5L, 1L, 4L, 1L, 1L, 2L, 1L, 1L, 1L, 3L, 
    1L, 1L, 2L, 3L, 3L, 5L, 5L, 6L, 1L, 3L, 1L, 1L, 2L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 4L, 3L, 5L, 
    1L, 2L), .Label = c("1", "2", "3", "4", "5", "6", "7"), class = "factor"), 
    `8` = structure(c(2L, 17L, 17L, 17L, 14L, 6L, 16L, 11L, 2L, 
    14L, 14L, 3L, 8L, 7L, 16L, 15L, 14L, 14L, 16L, 22L, 27L, 
    16L, 29L, 29L, 16L, 18L, 29L, 18L, 22L, 16L, 21L, 32L, 21L, 
    19L, 27L, 29L, 16L, 18L, 13L, 41L, 17L, 22L, 30L, 38L, 38L, 
    9L, 21L, 38L, 41L, 16L, 24L, 33L, 36L, 18L, 38L, 25L, 18L, 
    29L, 22L, 26L, 21L, 29L, 22L, 22L, 16L, 47L, 23L, 19L, 22L, 
    16L, 20L, 5L, 37L, 19L, 26L, 31L, 31L, 10L, 36L, 16L, 16L, 
    30L, 16L, 36L, 42L, 28L, 40L, 35L, 49L, 1L, 22L, 49L, 51L, 
    49L, 49L, 40L, 49L, 49L, 30L, 16L, 18L, 49L, 20L, 49L, 22L, 
    49L, 16L, 49L, 12L, 26L, 49L, 49L, 47L, 20L, 49L, 45L, 26L, 
    53L, 53L, 53L, 53L, 53L, 13L, 53L, 49L, 53L, 53L, 53L, 53L, 
    16L, 53L, 49L, 53L, 53L, 53L, 35L, 19L, 49L, 22L, 49L, 49L, 
    53L, 53L, 49L, 61L, 53L, 49L, 31L, 49L, 53L, 53L, 53L, 49L, 
    53L, 18L, 49L, 53L, 53L, 16L, 49L, 53L, 29L, 49L, 34L, 49L, 
    37L, 53L, 37L, 53L, 64L, 19L, 20L, 49L, 53L, 49L, 51L, 49L, 
    14L, 53L, 53L, 64L, 49L, 49L, 53L, 54L, 49L, 53L, 14L, 49L, 
    53L, 51L, 37L, 49L, 49L, 53L, 37L, 49L, 53L, 53L, 53L, 49L, 
    51L, 53L, 49L, 53L, 26L, 53L, 49L, 53L, 49L, 49L, 49L, 53L, 
    49L, 49L, 60L, 19L, 49L, 49L, 24L, 53L, 53L, 49L, 53L, 53L, 
    26L, 49L, 49L, 24L, 49L, 53L, 49L, 53L, 16L, 19L, 50L, 53L, 
    63L, 49L, 53L, 16L, 49L, 53L, 47L, 53L, 49L, 53L, 53L, 49L, 
    48L, 53L, 49L, 49L, 49L, 53L, 63L, 49L, 49L, 53L, 49L, 53L, 
    53L, 22L, 53L, 49L, 53L, 68L, 62L, 49L, 49L, 53L, 53L, 49L, 
    53L, 53L, 53L, 59L, 49L, 53L, 49L, 53L, 51L, 19L, 53L, 53L, 
    49L, 53L, 49L, 52L, 22L, 31L, 37L, 47L, 49L, 31L, 53L, 49L, 
    39L, 53L, 26L, 49L, 53L, 55L, 53L, 53L, 53L, 49L, 53L, 53L, 
    49L, 49L, 45L, 49L, 53L, 57L, 49L, 49L, 50L, 42L, 53L, 4L, 
    49L, 49L, 53L, 53L, 57L, 53L, 65L, 53L, 26L, 49L, 49L, 53L, 
    26L, 37L, 49L, 43L, 53L, 67L, 49L, 44L, 49L, 53L, 46L, 53L, 
    49L, 53L, 49L, 68L, 49L, 58L, 66L, 49L, 1L, 2L, 5L, 8L, 9L, 
    16L, 17L, 18L, 19L, 20L, 21L, 22L, 24L, 25L, 27L, 29L, 33L, 
    34L, 36L, 38L, 39L, 41L, 47L, 49L, 53L, 54L, 55L, 64L, 68L, 
    49L, 56L, 69L, 58L, 53L), .Label = c("11437", "12909", "40268", 
    "41238", "50836", "53001", "61709", "63415", "63567", "70304", 
    "71021", "81235", "1054443", "1065956", "1145941", "1186771", 
    "1189641", "1225376", "1281473", "1281531", "1281596", "1281654", 
    "1281768", "1281853", "1282081", "1282376", "1282425", "1282651", 
    "1282670", "1285816", "1297919", "1308960", "1311044", "1316212", 
    "1316362", "1325671", "1325680", "1325901", "1325910", "1334101", 
    "1338894", "1352983", "1362135", "1380554", "1380708", "1381162", 
    "1386511", "1401174", "1408423", "1408591", "1440882", "1446908", 
    "1449593", "1452093", "1463465", "1471795", "1472159", "1472195", 
    "1472888", "1484790", "1495375", "1499622", "1506430", "1513572", 
    "1531186", "1533126", "1535008", "1543251", "1595502"), class = "factor")), row.names = c(NA, 
-387L), class = "data.frame", vars = c("4", "5", "6", "7", "8"
), drop = TRUE, .Names = c("4", "5", "6", "7", "8")), indices = list(
    0L, 5:6, 7:11, 12:24, 25L, 26:27, 28L, 1L, 2L, 3L, 4L, 29L, 
    37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 
    49L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 50:51, 52L, 64L, 
    65L, 66L, 67L, 68L, 69L, 70L, 71L, 72L, 73L, 74L, 75:76, 
    77L, 78L, 79L, 80L, 81L, 82L, 83L, 84L, 85L, 86L, 87:88, 
    89L, 90L, 91L, 92L, 93L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 
    60L, 61L, 62L, 63L, 94L, 95L, 96L, 97L, 114L, 115L, 116L, 
    117L, 118L, 119L, 120L, 121L, 122L, 123L, 124L, 125L, 126L, 
    127L, 128L, 129L, 130L, 131L, 132L, 133L, 98L, 99L, 100L, 
    101L, 102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L, 
    111L, 112L, 113L, 134L, 135L, 136L, 137L, 138L, 139L, 140L, 
    141L, 142L, 143L, 144L, 207L, 208L, 209L, 210L, 211:212, 
    213L, 214L, 215L, 216L, 217L, 218L, 219L, 220L, 221L, 222L, 
    223L, 224L, 225L, 226L, 227L, 228L, 229:230, 231:232, 233L, 
    234L, 235L, 236L, 237L, 238:239, 240L, 241L, 242L, 243L, 
    244L, 245L, 246L, 247L, 248L, 249L, 250L, 251L, 252L, 253:254, 
    255L, 256L, 257L, 258L, 259L, 260L, 261L, 262:263, 264L, 
    265L, 266L, 267L, 268:269, 270L, 271L, 272L, 273L, 274L, 
    275L, 276:277, 278L, 279L, 280:281, 282L, 283L, 284L, 285:286, 
    287L, 288L, 289L, 290L, 291L, 292L, 293L, 294L, 295L, 296L, 
    297L, 298L, 299L, 300L, 301L, 302L, 303L, 304L, 305L, 306L, 
    307:308, 309L, 310L, 311L, 312L, 313L, 314L, 315L, 316L, 
    317L, 318:320, 321L, 322L, 323L, 324L, 325L, 326L, 327L, 
    328L, 329L, 330L, 331L, 332:333, 334L, 335:337, 338L, 339L, 
    340L, 341L, 145L, 146:147, 148L, 149L, 150L, 151L, 152L, 
    153L, 154L, 155L, 156L, 157L, 158L, 159L, 160L, 161L, 162L, 
    163L, 164L, 165L, 166L, 167L, 168L, 169L, 170L, 171L, 172L, 
    173L, 174:175, 176L, 177L, 178L, 179L, 180L, 181:182, 183L, 
    184L, 185L, 186L, 187:188, 189L, 190:191, 192L, 193L, 194L, 
    195L, 196L, 197L, 198L, 199L, 200:201, 202L, 203L, 204:206, 
    342L, 343L, 344:345, 346L, 347L, 348L, 349L, 350L, 351L, 
    352L, 353L, 354L, 355L, 356L, 357L, 358L, 359L, 360L, 361L, 
    362L, 363L, 364L, 365L, 367L, 366L, 368L, 369:370, 371L, 
    372L, 373L, 374L, 375:376, 377L, 378L, 379:380, 381L, 382L, 
    383L, 384L, 385L, 386L, 387L, 388L, 389L, 390L, 391L, 392L, 
    393L, 394:396, 397L, 398L, 399L, 400L, 401L, 402L, 403L, 
    404L, 440L, 485L, 486L, 487:488, 405:406, 407:425, 426:427, 
    428L, 429:430, 431:432, 433:434, 435L, 436L, 437L, 438:439, 
    441L, 442L, 443L, 444:445, 446L, 447L, 448L, 449:467, 468:480, 
    481L, 482L, 483L, 484L, 489L, 490L, 491L, 492L, 493L), drop = TRUE, group_sizes = c(1L, 
2L, 5L, 13L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 
1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 
1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 3L, 1L, 
1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 
1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 3L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 2L, 2L, 19L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 
1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 19L, 13L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L), biggest_group_size = 19L, .internal.selfref = <pointer: (nil)>, row.names = c(NA, 
6L), class = c("data.table", "data.frame"))

0 个答案:

没有答案