使用OCR为图像读取图像文本,该图像使用python具有两列或三列数据

时间:2018-04-13 18:50:35

标签: python python-2.7 ocr tesseract python-tesseract

在示例图像中(只是参考,我的图像将具有相同的图案)一个页面具有完整的水平文本,而另一个页面具有两个水平的文本列。

enter image description here

如何自动检测文档的模式并在python中读取另一列数据?

我正在使用带有Psm 6的Tesseract OCR,它正在水平读取,这是错误的。

1 个答案:

答案 0 :(得分:2)

实现这一目标的一种方法是使用形态学运算和轮廓检测。

对于前者你基本上"流血"将所有角色变成一个大块的大块。使用后者,您可以在图像中找到这些斑点并提取看起来很有趣的斑点(意思是:足够大)。extracted contours

使用的脚本:

import cv2
import sys

SCALE = 4
AREA_THRESHOLD = 427505.0 / 2

def show_scaled(name, img):
    try:
        h, w  = img.shape
    except ValueError:
        h, w, _  = img.shape
    cv2.imshow(name, cv2.resize(img, (w // SCALE, h // SCALE)))

def main():
    img = cv2.imread(sys.argv[1])
    img = img[10:-10, 10:-10] # remove the border, it confuses contour detection
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    show_scaled("original", gray)

    # black and white, and inverted, because
    # white pixels are treated as objects in
    # contour detection
    thresholded = cv2.adaptiveThreshold(
                gray, 255,
                cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV,
                25,
                15
            )
    show_scaled('thresholded', thresholded)
    # I use a kernel that is wide enough to connect characters
    # but not text blocks, and tall enough to connect lines.
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (13, 33))
    closing = cv2.morphologyEx(thresholded, cv2.MORPH_CLOSE, kernel)

    im2, contours, hierarchy = cv2.findContours(closing, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    show_scaled("closing", closing)

    for contour in contours:
        convex_contour = cv2.convexHull(contour)
        area = cv2.contourArea(convex_contour)
        if area > AREA_THRESHOLD:
            cv2.drawContours(img, [convex_contour], -1, (255,0,0), 3)

    show_scaled("contours", img)
    cv2.imwrite("/tmp/contours.png", img)
    cv2.waitKey()

if __name__ == '__main__':
    main()

然后您只需要计算轮廓的边界框,并将其从原始图像中剪切掉。添加一点余量并将整个过程提供给tesseract。