在示例图像中(只是参考,我的图像将具有相同的图案)一个页面具有完整的水平文本,而另一个页面具有两个水平的文本列。
如何自动检测文档的模式并在python中读取另一列数据?
我正在使用带有Psm 6的Tesseract OCR,它正在水平读取,这是错误的。
答案 0 :(得分:2)
实现这一目标的一种方法是使用形态学运算和轮廓检测。
对于前者你基本上"流血"将所有角色变成一个大块的大块。使用后者,您可以在图像中找到这些斑点并提取看起来很有趣的斑点(意思是:足够大)。
使用的脚本:
import cv2
import sys
SCALE = 4
AREA_THRESHOLD = 427505.0 / 2
def show_scaled(name, img):
try:
h, w = img.shape
except ValueError:
h, w, _ = img.shape
cv2.imshow(name, cv2.resize(img, (w // SCALE, h // SCALE)))
def main():
img = cv2.imread(sys.argv[1])
img = img[10:-10, 10:-10] # remove the border, it confuses contour detection
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
show_scaled("original", gray)
# black and white, and inverted, because
# white pixels are treated as objects in
# contour detection
thresholded = cv2.adaptiveThreshold(
gray, 255,
cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV,
25,
15
)
show_scaled('thresholded', thresholded)
# I use a kernel that is wide enough to connect characters
# but not text blocks, and tall enough to connect lines.
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (13, 33))
closing = cv2.morphologyEx(thresholded, cv2.MORPH_CLOSE, kernel)
im2, contours, hierarchy = cv2.findContours(closing, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
show_scaled("closing", closing)
for contour in contours:
convex_contour = cv2.convexHull(contour)
area = cv2.contourArea(convex_contour)
if area > AREA_THRESHOLD:
cv2.drawContours(img, [convex_contour], -1, (255,0,0), 3)
show_scaled("contours", img)
cv2.imwrite("/tmp/contours.png", img)
cv2.waitKey()
if __name__ == '__main__':
main()
然后您只需要计算轮廓的边界框,并将其从原始图像中剪切掉。添加一点余量并将整个过程提供给tesseract。