我正在使用KLT(Kanade-Lucas-Tomasi跟踪)跟踪算法来跟踪印度的交通流量。我正在正确地跟踪交通一侧的流量,但是根本没有检测到在框架中移动的交通的另一侧。
算法由cv2.goodFeaturesToTrack
和cv2.calcOpticalFlowPyrLK
组成,以实现结果。
在图片中,您可以看到红色和银色汽车没有跟踪功能。左侧的黄色自动也未被跟踪。有什么理由吗?角落仍在那里。
cv2.goodFeaturesToTrack
的功能参数:
feature_params = dict( maxCorners = 500, # How many pts. to locate
qualityLevel = 0.1, # b/w 0 & 1, min. quality below which everyone is rejected
minDistance = 7, # Min eucledian distance b/w corners detected
blockSize = 3 ) # Size of an average block for computing a derivative covariation matrix over each pixel neighborhood
cv2.calcOpticalFlowPyrLK
的功能参数:
lk_params = dict( winSize = (15,15), # size of the search window at each pyramid level
maxLevel = 2, # 0, pyramids are not used (single level), if set to 1, two levels are used, and so on
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
我必须使用的视频是60分钟。很长时间和KLT在5分钟后停止跟踪 ..任何建议或帮助都会很棒。感谢。
答案 0 :(得分:2)
基本上,您正在做正确的事情,只需要重新初始化进行跟踪的优点即可
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)
每5帧说完一次或之后说什么 希望能帮助到你 ! 以下是我的代码:
import cv2
import numpy as np
cap = cv2.VideoCapture('side.avi')
# params for ShiTomasi corner detection
feature_params = dict( maxCorners = 100,
qualityLevel = 0.3,
minDistance = 7,
blockSize = 7 )
# Parameters for lucas kanade optical flow
lk_params = dict( winSize = (15,15),
maxLevel = 2,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# Create some random colors
color = np.random.randint(0,255,(100,3))
# Take first frame and find corners in it
ret, old_frame = cap.read()
for i in range(60):
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)
print(p0)
# Create a mask image for drawing purposes
mask = np.zeros_like(old_frame)
while(1):
ret,frame = cap.read()
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
frame_no = cap.get(cv2.CAP_PROP_POS_FRAMES)
if int(frame_no)%5 == 0:
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)
# calculate optical flow
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
# Select good points
good_new = p1[st==1]
good_old = p0[st==1]
# draw the tracks
for i,(new,old) in enumerate(zip(good_new,good_old)):
a,b = new.ravel()
c,d = old.ravel()
mask = cv2.line(mask, (a,b),(c,d), color[i].tolist(), 2)
frame = cv2.circle(frame,(a,b),5,color[i].tolist(),-1)
img = cv2.add(frame,mask)
cv2.imshow('frame',img)
k = cv2.waitKey(2000) & 0xff
if k == 27:
break
# Now update the previous frame and previous points
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1,1,2)
cv2.destroyAllWindows()
cap.release()
答案 1 :(得分:1)
import numpy as np
import cv2
video_path = ''
output_file = ""
cap = cv2.VideoCapture(video_path)
fourcc = cv2.VideoWriter_fourcc(*'DIVX')
# params for ShiTomasi corner detection
feature_params = dict( maxCorners = 500, # How many pts. to locate
qualityLevel = 0.1, # b/w 0 & 1, min. quality below which everyone is rejected
minDistance = 7, # Min eucledian distance b/w corners detected
blockSize = 3 ) # Size of an average block for computing a derivative covariation matrix over each pixel neighborhood
# Parameters for lucas kanade optical flow
lk_params = dict( winSize = (15,15), # size of the search window at each pyramid level
maxLevel = 2, # 0, pyramids are not used (single level), if set to 1, two levels are used, and so on
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
''' Criteria : Termination criteria for iterative search algorithm.
after maxcount { Criteria_Count } : no. of max iterations.
or after { Criteria Epsilon } : search window moves by less than this epsilon '''
# Take first frame and find corners in it
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
p0 = cv2.goodFeaturesToTrack(old_gray, mask=None, **feature_params) #use goodFeaturesToTrack to find the location of the good corner.
# Create a mask image for drawing purposes filed with zeros
mask = np.zeros_like(old_frame)
y = 0
is_begin = True # To save the output video
count = 1 # for the frame count
n = 50 # Frames refresh rate for feature generation
while True:
ret,frame = cap.read()
if frame is None:
break
processed = frame
#Saving the Video
if is_begin:
h, w, _ = processed.shape
out = cv2.VideoWriter(output_file, fourcc, 30, (w, h), True)
is_begin = False
# Convert to Grey Frame
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
if count%n == 0: # Refresh the tracking features after every 50 frames
cv2.imwrite('img/r{0:05d}.jpg'.format(y), img)
y += 1
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
p0 = cv2.goodFeaturesToTrack(old_gray, mask=None, **feature_params)
mask = np.zeros_like(old_frame)
# calculate optical flow
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
# Select good points
good_new = p1[st==1]
good_old = p0[st==1]
# draw the tracks
for i,(new,old) in enumerate(zip(good_new,good_old)):
a,b = new.ravel() #tmp new value
c,d = old.ravel() #tmp old value
#draws a line connecting the old point with the new point
mask = cv2.line(mask, (a,b),(c,d), (0,255,0), 1)
#draws the new point
frame = cv2.circle(frame,(a,b),2,(0,0,255), -1)
img = cv2.add(frame,mask)
out.write(img)
cv2.imshow('frame',img)
k = cv2.waitKey(30) & 0xff
#Show the Output
if k == 27:
cv2.imshow('', img)
break
# Now update the previous frame and previous points
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1,1,2)
count += 1
# release and destroy all windows
cv2.destroyAllWindows()
cap.release()
我添加了GoodFeaturetoTrack的刷新率,该刷新率正在运行,但我们无法获得完整的轨迹。现在就做吧。