要求
给出张量如:
SparseTensorValue(indices=array([[0, 0], [1, 0], [1, 1], [1, 2]]),
values=array([2, 0, 2, 5]),
dense_shape=array([2, 3]))
形状为2x3
| 2 na na |
| 0 2 5 |
索引中需要一个具有值的新张量,如下所示:
请注意,总数值为6(设置为[0,1,2,3,4,5]) 形状是2x6
| 0 0 1 0 0 0 |
| 1 0 1 0 0 1 |
可以通过以下代码创建张量:
SparseTensorValue(indices=array([[0, 2], [1, 0], [1, 2], [1, 5]]),
values=array([1, 1, 1, 1]),
dense_shape=array([2, 6]))
如何以TensorFlow方式执行此操作?以下两种方法都不起作用
import tensorflow as tf
tags = tf.SparseTensor(indices=[[0, 0], [1, 0], [1, 1], [1, 2]],
values=[2, 0, 2, 5],
dense_shape=[2, 3])
print(type(tags.indices))
# approach 1: the TensorFlow way to implement the python logic
new_indices = [[tags.indices[i], tags.values[i]]
for i in range(tags.values.shape[0])] # syntax incorrect
# approach 2:
indice_idx = tf.map_fn(lambda x : x[0], tags.indices)
value_idx = tf.map_fn(lambda x : x[1], tags.indices)
value_arr = tf.gather(tags.values, value_idx)
with tf.Session() as s1:
print(indice_idx.eval())
print(tags.values.eval())
print('value_arr', value_arr.eval())
"""
[0 0 1 2] <-- value_idx, which is the index of tags.values
want to combine
[0 1 1 1] <-- indice_idx
[2 2 0 2] <-- value_arr, which is the value of tags.values
==>
[[0,2], [1,2], [1,0], [1,2]]
"""
new_indices = tf.concat(indice_idx, value_arr) # syntax incorrect
with tf.Session() as s:
s.run([tf.global_variables_initializer(), tf.tables_initializer()])
print(s.run(value_arr))
print(s.run(tags.values))
print(s.run(new_indices))
print(s.run(tags.indices[3, 1]))
答案 0 :(得分:0)
<强>答案强>
方法2中的:
new_indices = tf.stack([indice_idx, value_arr], axis=1)
完整版代码
import tensorflow as tf
tags = tf.SparseTensor(indices=[[0, 0], [1, 0], [1, 1], [1, 2]],
values=[2, 0, 2, 5],
dense_shape=[2, 3])
print(type(tags.indices))
# # approach 1: any TensorFlow way to implement the Python logic below?
# new_indices = [[tags.indices[i], tags.values[i]]
# for i in range(tags.values.shape[0])] # syntax incorrect
# approach 2:
indice_idx = tf.map_fn(lambda x : x[0], tags.indices)
value_idx = tf.map_fn(lambda x : x[1], tags.indices)
value_arr = tf.cast(tf.gather(tags.values, value_idx), tf.int64)
with tf.Session() as s1:
print(indice_idx.eval())
print(tags.values.eval())
print('value_arr', value_arr.eval())
"""
[0 0 1 2] <-- value_idx, which is the index of tags.values
tf.stack does:
[0 1 1 1] <-- indice_idx
[2 2 0 2] <-- value_arr, which is the value of tags.values
==>
[[0,2], [1,2], [1,0], [1,2]]
"""
new_indices = tf.stack([indice_idx, value_arr], axis=1)
with tf.Session() as s:
s.run([tf.global_variables_initializer(), tf.tables_initializer()])
print(s.run(value_arr))
print(s.run(tags.values))
print(s.run(new_indices))
print(s.run(tags.indices[3, 1]))
这个问题本身已经解决了。
分离的相关问题
P.S。如果阅读文件,它无法正常工作,请参阅:
create multi-hot SparseTensor by categorical feature array column from CSV in TensorFlow