我想找出遵循正态分布的样本的置信区间。
为了测试代码,我先创建一个样本并尝试在Jupyter笔记本中绘制置信区间图[python kernel]
%matplotlib notebook
import pandas as pd
import numpy as np
import statsmodels.stats.api as sms
import matplotlib.pyplot as plt
s= np.random.normal(0,1,2000)
# s= range(10,14) <---this sample has the right CI
# s = (0,0,1,1,1,1,1,2) <---this sample has the right CI
# confidence interval
# I think this is the fucniton I misunderstand
ci=sms.DescrStatsW(s).tconfint_mean()
plt.figure()
_ = plt.hist(s, bins=100)
# cnfidence interval left line
one_x12, one_y12 = [ci[0], ci[0]], [0, 20]
# cnfidence interval right line
two_x12, two_y12 = [ci[1], ci[1]], [0, 20]
plt.plot(one_x12, one_y12, two_x12, two_y12, marker = 'o')
绿线和黄线假设为置信区间。但他们并没有处于正确的位置。
我可能会误解这个功能:
sms.DescrStatsW(s).tconfint_mean()
但文件说这个函数会返回置信区间。
这是我期望的数字:
%matplotlib notebook
import pandas as pd
import numpy as np
import statsmodels.stats.api as sms
import matplotlib.pyplot as plt
s= np.random.normal(0,1,2000)
plt.figure()
_ = plt.hist(s, bins=100)
# cnfidence interval left line
one_x12, one_y12 = [np.std(s, axis=0) * -1.96, np.std(s, axis=0) * -1.96], [0, 20]
# cnfidence interval right line
two_x12, two_y12 = [np.std(s, axis=0) * 1.96, np.std(s, axis=0) * 1.96], [0, 20]
plt.plot(one_x12, one_y12, two_x12, two_y12, marker = 'o')
答案 0 :(得分:1)
问题看起来像#34;有什么函数来计算置信区间&#34;。
由于给定的数据是正态分布,这可以通过
简单地完成ci = scipy.stats.norm.interval(0.95, loc=0, scale=1)
0.95是α值,它指定了95个百分点,因为公式中给出了相应的1.96标准偏差。 (https://en.wikipedia.org/wiki/1.96)
loc=0
指定平均值,scale=1
指定sigma。
(https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule)
您可以查看@bogatron的答案,详细了解Compute a confidence interval from sample data
以下代码生成您想要的图表。我将随机数播种为可重复性。
import pandas as pd
import numpy as np
import statsmodels.stats.api as sms
import matplotlib.pyplot as plt
import scipy
s = np.random.seed(100)
s= np.random.normal(0,1,2000)
plt.figure()
_ = plt.hist(s, bins=100)
sigma=1
mean=0
ci = scipy.stats.norm.interval(0.95, loc=mean, scale=sigma)
print(ci)
# cnfidence interval left line
one_x12, one_y12 = [ci[0],ci[0]], [0, 20]
# cnfidence interval right line
two_x12, two_y12 = [ci[1],ci[1]], [0, 20]
plt.plot(one_x12, one_y12, two_x12, two_y12, marker = 'o')
ci返回
(-1.959963984540054, 1.959963984540054)
这是情节。