我已经在tensorflow中训练了如下模型:
batch_size = 128
graph = tf.Graph()
with graph.as_default():
# Input data. For the training data, we use a placeholder that will be fed
# at run time with a training minibatch.
tf_train_dataset = tf.placeholder(tf.float32,
shape=(batch_size, image_size * image_size))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
# Variables.
weights = tf.Variable(
tf.truncated_normal([image_size * image_size, num_labels]))
biases = tf.Variable(tf.zeros([num_labels]))
# Training computation.
logits = tf.matmul(tf_train_dataset, weights) + biases
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits))
# Optimizer.
optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
# Predictions for the training, validation, and test data.
train_prediction = tf.nn.softmax(logits)
valid_prediction = tf.nn.softmax(
tf.matmul(tf_valid_dataset, weights) + biases)
test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases)
num_steps = 3001
with tf.Session(graph=graph) as session:
tf.global_variables_initializer().run()
print("Initialized")
for step in range(num_steps):
# Pick an offset within the training data, which has been randomized.
# Note: we could use better randomization across epochs.
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
# Generate a minibatch.
batch_data = train_dataset[offset:(offset + batch_size), :]
batch_labels = train_labels[offset:(offset + batch_size), :]
# Prepare a dictionary telling the session where to feed the minibatch.
# The key of the dictionary is the placeholder node of the graph to be fed,
# and the value is the numpy array to feed to it.
feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
_, l, predictions = session.run(
[optimizer, loss, train_prediction], feed_dict=feed_dict)
if (step % 500 == 0):
print("Minibatch loss at step %d: %f" % (step, l))
print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
print("Validation accuracy: %.1f%%" % accuracy(
valid_prediction.eval(), valid_labels))
print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))
现在我想使用单个图像作为输入,将其重新整形为与我的训练图像相同的格式,并获得10个类的预测作为概率。这个问题已被多次询问,我很难理解他们的解决方案,最好的答案之一就是使用这段代码:
feed_dict = {x: [your_image]}
classification = tf.run(y, feed_dict)
print classification
我的代码中x和y等价的是什么?假设我从测试数据集中选择一个图像来预测为:
img = train_dataset[678]
我期待一个包含10个概率的数组。
答案 0 :(得分:2)
让我回答我自己的问题: 首先必须更改这些代码行,我们必须使用None而不是const批量大小,以便我们以后可以将单个图像作为输入提供:
tf_train_dataset = tf.placeholder(tf.float32, shape=(None, image_size * image_size),name="train_to_restore")
tf_train_labels = tf.placeholder(tf.float32, shape=(None, num_labels))
在会话中我使用此代码将新图像提供给模型:
from skimage import io
img = io.imread('newimage.png', as_grey=True)
nx, ny = img.shape
img_flat = img.reshape(nx * ny)
IMG = np.reshape(img,(1,784))
answer = session.run(train_prediction, feed_dict={tf_train_dataset: IMG})
print(answer)
我的图像在训练集中为28 * 28,因此请确保您的新图像也是28 * 28,您必须将其展平为1 * 784并将其提供给您的模型并接收预测概率