我正在使用以下代码运行基本的差异差异回归模型,其中包含年份和县固定效果:
xtreg ln_murder_rate i.treated##i.after_1980 i.year ln_deprivation ln_foreign_born young_population manufacturing low_skill_sector unemployment ln_median_income [weight = mean_population], fe cluster(fips) robust
i.treated
是一个二分法衡量一个县是否在研究的整个生命周期内接受了治疗,after_1980
衡量治疗的后期。但是,当我运行此回归时,我的治疗变量的估计值被省略,所以我无法真正解释结果。下面是输出的屏幕截图。我会喜欢一些关于检查内容的指导,这样我就可以在治疗前得到治疗变量的估计值。
xtreg ln_murder_rate i.treated##i.after_1980 i.year ln_deprivation ln_foreign_bo
> rn young_population manufacturing low_skill_sector unemployment ln_median_income
> [weight = mean_population], fe cluster(fips) robust
(analytic weights assumed)
note: 1.treated omitted because of collinearity
note: 2000.year omitted because of collinearity
Fixed-effects (within) regression Number of obs = 15,221
Group variable: fips Number of groups = 3,117
R-sq: Obs per group:
within = 0.2269 min = 1
between = 0.1093 avg = 4.9
overall = 0.0649 max = 5
F(12,3116) = 89.46
corr(u_i, Xb) = 0.0502 Prob > F = 0.0000
(Std. Err. adjusted for 3,117 clusters in fips)
---------------------------------------------------------------------------------
| Robust
ln_murder_rate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
----------------+----------------------------------------------------------------
1.treated | 0 (omitted)
1.after_1980 | .2012816 .1105839 1.82 0.069 -.0155431 .4181063
|
treated#|
after_1980 |
1 1 | .0469658 .0857318 0.55 0.584 -.1211307 .2150622
|
year |
1970 | .4026329 .0610974 6.59 0.000 .2828376 .5224282
1980 | .6235034 .0839568 7.43 0.000 .4588872 .7881196
1990 | .4040176 .0525122 7.69 0.000 .3010555 .5069797
2000 | 0 (omitted)
|
ln_deprivation | .3500093 .119083 2.94 0.003 .1165202 .5834983
ln_foreign_born | .0179036 .0616842 0.29 0.772 -.1030421 .1388494
young_populat~n | .0030727 .0081619 0.38 0.707 -.0129306 .0190761
manufacturing | -.0242317 .0073166 -3.31 0.001 -.0385776 -.0098858
low_skill_sec~r | -.0084896 .0088702 -0.96 0.339 -.0258816 .0089025
unemployment | .0335105 .027627 1.21 0.225 -.0206585 .0876796
ln_median_inc~e | -.2423776 .1496396 -1.62 0.105 -.5357799 .0510246
_cons | 2.751071 1.53976 1.79 0.074 -.2679753 5.770118
----------------+----------------------------------------------------------------
sigma_u | .71424066
sigma_e | .62213091
rho | .56859936 (fraction of variance due to u_i)
---------------------------------------------------------------------------------
答案 0 :(得分:3)
这是偏离主题的,因为这基本上是一个统计问题。
被处理的变量被丢弃,因为它是时不变的并且您正在进行固定效应回归,它通过减去每个协变量和结果的每个面板的平均值来转换数据。经过处理的观察结果都将处理设置为1,因此当您减去每个面板处理的平均值(也是一个)时,您得到零。类似地,对于对照观察,除了它们都已将处理设置为零。结果是处理后的色谱柱全部为零,Stata将其降低,因为否则基质不可逆,因为没有变化。
您关心的参数被处理#after_1980,这是DID效果并在您的输出中报告。治疗失败的事实并不令人担忧。