我正在从网站的多个页面抓取多个表格。问题是初始表中缺少一行。基本上,这就是数据帧的外观。
mar2018 feb2018 jan2018 dec2017 nov2017
oct2017 sep2017 aug2017
balls faced 345 561 295 0 645 balls faced 200 58 0
runs scored 156 281 183 0 389 runs scored 50 20 0
strike rate 52.3 42.6 61.1 0 52.2 strike rate 25 34 0
dot balls 223 387 173 0 476 dot balls 125 34 0
fours 8 12 19 0 22 sixes 2 0 0
doubles 20 38 16 0 36 fours 4 2 0
notout 2 0 0 0 4 doubles 2 0 0
notout 4 2 0
列' sixes'在第一页中缺少并出现在后续页面中。所以,我试图从' fours'开始移动行。不要出去'从2014年3月到2017年2月,前5个列的第4行留下一个位置。
我尝试了以下代码,但它不起作用。这是水平移动值而不是垂直向下移动。
df.iloc[4][0:6] = df.iloc[4][0:6].shift(1)
以及
df2 = pd.DataFrame(index = 4)
df = pd.concat([df.iloc[:], df2, df.iloc[4:]]).reset_index(drop=True)
没用。
df['mar2018'] = df['mar2018'].shift(1)
但是这会将该列的所有值向下移动1行。
所以,我想知道是否有可能从特定索引中删除特定列的行?
答案 0 :(得分:1)
我认为联合所需的reindex
需要numpy.union1d
所有索引值:
idx = np.union1d(df1.index, df2.index)
df1 = df1.reindex(idx)
df2 = df2.reindex(idx)
print (df1)
mar2018 feb2018 jan2018 dec2017 nov2017
balls faced 345.0 561.0 295.0 0.0 645.0
dot balls 223.0 387.0 173.0 0.0 476.0
doubles 20.0 38.0 16.0 0.0 36.0
fours 8.0 12.0 19.0 0.0 22.0
notout 2.0 0.0 0.0 0.0 4.0
runs scored 156.0 281.0 183.0 0.0 389.0
sixes NaN NaN NaN NaN NaN
strike rate 52.3 42.6 61.1 0.0 52.2
print (df2)
oct2017 sep2017 aug2017
balls faced 200 58 0
dot balls 125 34 0
doubles 2 0 0
fours 4 2 0
notout 4 2 0
runs scored 50 20 0
sixes 2 0 0
strike rate 25 34 0
如果列表中有多个DataFrame
,请使用list comprehension
:
from functools import reduce
dfs = [df1, df2]
idx = reduce(np.union1d, [x.index for x in dfs])
dfs1 = [df.reindex(idx) for df in dfs]
print (dfs1)
[ mar2018 feb2018 jan2018 dec2017 nov2017
balls faced 345.0 561.0 295.0 0.0 645.0
dot balls 223.0 387.0 173.0 0.0 476.0
doubles 20.0 38.0 16.0 0.0 36.0
fours 8.0 12.0 19.0 0.0 22.0
notout 2.0 0.0 0.0 0.0 4.0
runs scored 156.0 281.0 183.0 0.0 389.0
sixes NaN NaN NaN NaN NaN
strike rate 52.3 42.6 61.1 0.0 52.2, oct2017 sep2017 aug2017
balls faced 200 58 0
dot balls 125 34 0
doubles 2 0 0
fours 4 2 0
notout 4 2 0
runs scored 50 20 0
sixes 2 0 0
strike rate 25 34 0]