我有一个向量,例如,V = [10, 30, 20, 50]
个N个元素和一个概率向量P = [.2, .3, .1, .4]
。在张量流中,如何从V中随机采样符合给定概率分布P的K个元素?我希望通过替换来完成采样。
答案 0 :(得分:2)
tf.nn.fixed_unigram_candidate_sampler
会或多或少地做你想要的。问题是,它只能将int32参数作为unigrams参数(概率分布),因为它是为高数字多类处理而设计的,例如语言处理。您可以将概率分布中的数字乘以得到一个整数,但只能达到精度限制。
将所需数量的样本放入num_samples
,将概率权重放入unigrams
(必须为int32。)参数true_classes
必须填充相同数量的元素num_true
,但不相关,因为您将获得索引(然后使用它们来提取样本。)unique
可以根据需要更改为True。
这是经过测试的代码:
import tensorflow as tf
import numpy as np
sess = tf.Session()
V = tf.constant( np.array( [[ 10, 30, 20, 50 ]]), dtype=tf.int64)
sampled_ids, true_expected_count, sampled_expected_count = tf.nn.fixed_unigram_candidate_sampler(
true_classes = V,
num_true = 4,
num_sampled = 50,
unique = False,
range_max = 4,
unigrams = [ 20, 30, 10, 40 ] # this is P, times 100
)
sample = tf.gather( V[ 0 ], sampled_ids )
x = sess.run( sample )
print( x )
输出:
[50 20 10 30 30 30 10 30 20 50 50 50 10 50 10 30 50 50 30 30 50 10 20 30 50 50 50 50 30 50 50 30 50 50 50 50 50 50 50 10 50 30 50 10 50 50 10 30 50 50]
如果你真的想使用float32概率值,那么你必须从几个部分创建采样器(对此没有任何操作),像这样(测试代码):
import tensorflow as tf
import numpy as np
sess = tf.Session()
k = 50 # number of samples you want
V = tf.constant( [ 10, 30, 20, 50 ], dtype = tf.float32 ) # values
P = tf.constant( [ 0.2, 0.3, 0.1, 0.4 ], dtype = tf.float32 ) # prob dist
cum_dist = tf.cumsum( P ) # create cumulative probability distribution
# get random values between 0 and the max of cum_dist
# we'll determine where it is in the cumulative distribution
rand_unif = tf.random_uniform( shape=( k, ), minval = 0.0, maxval = tf.reduce_max( cum_dist ), dtype = tf.float32 )
# create boolean to signal where the random number is greater than the cum_dist
# take advantage of broadcasting to create Cartesian product
greater = tf.expand_dims( rand_unif, axis = -1 ) > tf.expand_dims( cum_dist, axis = 0 )
# we get the indices by counting how many are greater in any given row
idxs = tf.reduce_sum( tf.cast( greater, dtype = tf.int64 ), 1 )
# then just gather the sample from V by the indices
sample = tf.gather( V, idxs )
# run, output
print( sess.run( sample ) )
输出:
[20。 10. 50. 50. 20. 30. 10. 20. 30. 50. 20. 50. 30. 50. 30. 50. 50. 50。 50. 50. 50. 30. 20. 20. 20. 10. 50. 30. 30. 10. 50. 50. 50. 20. 30. 50。 30. 10. 50. 20. 30. 50. 30. 10. 10. 50. 50. 20. 50. 30。]
答案 1 :(得分:0)
tf.distributions.Categorical()
可能是一次性完成任务的方法。根据{{3}}页,给定在P
值上定义的概率分布N
,tf.distributions.Categorical()
可以生成概率为0, 1, ..., N-1
的整数P[0], P[1], ..., P[N-1]
。生成的整数可以解释为向量V
的索引。以下代码段对此进行了说明:
# Probability distribution
P = [0.2, 0.3, 0.1, 0.4]
# Vector of values
V = [10, 30, 20, 50]
# Define categorical distribution
dist = tf.distributions.Categorical(probs=P)
# Generate a sample from categorical distribution - this serves as an index
index = dist.sample().eval()
# Fetch the value at V[index] as the sample
sample = V[index]
所有这些都可以在一个衬套中完成:
sample = V[tf.distributions.Categorical(probs=P).sample().eval()]
如果要从此分布中生成K
个样本,请将上面的一个衬纸包装在列表中:
samples = [ V[tf.distributions.Categorical(probs=P).sample().eval()] for i in range(K) ]
上面的代码对于K = 30的输出:
[50、10、30、50、30、20、50、30、50、50、30、50、30、50、20、10、50、20、30、30、50、50、50, 30,20,50,30,30,50,50]
也许有比使用列表理解更好的方法。