我正在编写一个回调函数,它看起来像这样。
typedef pcl::PointXYZ PointT;
void velocity_callback(const geometry_msgs::TwistPtr cmd_vel)
{
ros::Time now = ros::Time::now();
laser_assembler::AssembleScans2 srv;
srv.request.end = now;
srv.request.begin = now - ros::Duration(0.11);
sensor_msgs::PointCloud2 vertical_pc;
vertical_pc = srv.response.cloud;
pcl::PointCloud<PointT>::Ptr cloud(new pcl::PointCloud<PointT>);
pcl::fromROSMsg(vertical_pc, *cloud);
// Ground filter
pcl::PassThrough<PointT> ground_filter;
ground_filter.setNegative(true);
ground_filter.setInputCloud (cloud);
ground_filter.setFilterFieldName ("z");
ground_filter.setFilterLimits (-0.7 , -0.5);
// Filtered patient Cloud
pcl::PointCloud<PointT>::Ptr filtered_ground_cloud(new pcl::PointCloud<PointT>);
ground_filter.filter (*filtered_ground_cloud);
//******* Bounding box for object
pcl::CropBox<pcl::PointXYZ> boxFilter;
boxFilter.setNegative(true);
boxFilter.setMin(Eigen::Vector4f(-1.0, -0.5, -0.5, 1.0));
boxFilter.setMax(Eigen::Vector4f( 0.0, 0.5, 0.5, 1.0));
boxFilter.setInputCloud(filtered_ground_cloud);
// Filtered Cloud
pcl::PointCloud<PointT>::Ptr filtered_cloud(new pcl::PointCloud<PointT>);
boxFilter.filter (*filtered_cloud);
}
我有vertical_pc,cloud,filtered_ground_cloud,filtered_cloud位于内存中。在我的情况下,我只需要最后的&#34; filtered_cloud。&#34;如何在每次过滤后删除点云数据。
是否可以做这样的事情
ground_filter.setInputCloud (cloud);
ground_filter.filter (*cloud);
pcl::PointCloud<PointT>::Ptr
创建boost::shared_ptr
。
由于
答案 0 :(得分:1)
您可以使用pcl::PointCloud<PointT>::clear
方法。例如vertical_pc->clear
。但是,clear
似乎并没有真正释放内存。如果使用pcl::PointCloud<PointT>::Ptr::reset
函数,则实际释放内存。参见示例:
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <iostream>
int main(int argc, char** argv)
{
int n = 100000000;
std::cout<<"Creating "<<n<<" points"<<std::endl;
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
cloud->resize(n);
std::cout<<"\n";
std::cout<<"Cloud size: "<<cloud->size()<<std::endl;
cloud->clear();
std::cout<<"Cloud cleared!"<<std::endl;
sleep(5);
cloud.reset(new pcl::PointCloud<pcl::PointXYZ>);
std::cout<<"Cloud swapped!"<<std::endl;
sleep(5);
}
我在Ubuntu 14.04中尝试过并使用htop可视化我程序的内存使用情况。
此外,您可以使用相同的点云作为过滤方法的输入和输出。见这个例子:
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/filters/passthrough.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <iostream>
int main(int argc, char** argv)
{
int n(1000);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
cloud->resize(n);
double max(10);
double min(-10);
for (int i = 0;i<cloud->size();i++)
{
std::cout<<i<<"/"<<cloud->size()<<"\r";
cloud->points[i].x = (max-min) * rand () / (RAND_MAX + 1.0f) + min;
cloud->points[i].y = (max-min) * rand () / (RAND_MAX + 1.0f) + min;
cloud->points[i].z = (max-min) * rand () / (RAND_MAX + 1.0f) + min;
std::cout<<i<<"/"<<cloud->size()<<"\r";
}
// Display cloud
pcl::visualization::PCLVisualizer::Ptr viewer(new pcl::visualization::PCLVisualizer);
viewer->addCoordinateSystem(2);
viewer->addPointCloud(cloud,"original");
viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR,1,1,1,"original");
viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE,1,"original");
// Create the filtering object
pcl::PassThrough<pcl::PointXYZ> pass;
pass.setInputCloud (cloud);
pass.setFilterFieldName ("z");
pass.setFilterLimits (0.0, max);
std::cout<<"Cloud size: "<<cloud->size()<<std::endl;
pass.filter (*cloud);
std::cout<<"Cloud size: "<<cloud->size()<<std::endl;
viewer->addPointCloud(cloud,"filtered");
viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR,1,0,0,"filtered");
viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE,2,"filtered");
// Display
viewer->spin();
}