我想添加一个带轨迹栏的功能进行校准,以便检测特定(或希望的)形状。跟踪条应校准HSV和阈值。
这是我的代码,但它只检测完美照明中的完美形状,并且如果光线不完美则无法识别任何内容。这需要安装在无人机上,因此这将捕获近100英尺的视频,并且应该能够检测形状并捕获图像。
# import the necessary packages
import argparse
import cv2
import time
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video", help="path to the video file")
args = vars(ap.parse_args())
def nothing(x):
print x
pass
count=0 #Initializing count to 0, which will be used for naming the captured frame.
# load the video
camera = cv2.VideoCapture(args["video"])
#camera=cv2.VideoCapture(0) #For live feed from External Camera
# keep looping
while True:
# grab the current frame and initialize the status text
(grabbed, frame) = camera.read()
status = "No Targets/Waypoint"
# check to see if we have reached the end of the
# video
if not grabbed:
break
# convert the frame to grayscale, blur it, and detect edges
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (7, 7), 0)
edged = cv2.Canny(blurred, 50, 150)
# find contours in the edge map
_, contours,_ = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
# loop over the contours
for c in contours:
# approximate the contour
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.01 * peri, True)
# ensure that the approximated contour is "roughly" rectangular
if len(approx) >= 3 and len(approx) <= 6:
# compute the bounding box of the approximated contour and
# use the bounding box to compute the aspect ratio
(x, y, w, h) = cv2.boundingRect(approx)
aspectRatio = w / float(h)
# compute the solidity of the original contour
area = cv2.contourArea(c)
hullArea = cv2.contourArea(cv2.convexHull(c))
solidity = area / float(hullArea)
# compute whether or not the width and height, solidity, and
# aspect ratio of the contour falls within appropriate bounds
keepDims = w > 25 and h > 25
keepSolidity = solidity > 0.9
keepAspectRatio = aspectRatio >= 0.8 and aspectRatio <= 1.2
# ensure that the contour passes all our tests
if keepDims and keepSolidity and keepAspectRatio:
# draw an outline around the target and update the status
# text
cv2.drawContours(frame, [approx], -1, (0, 0, 255), 4)
status = "Target(s)/Waypoint(s) Acquired"
# compute the center of the contour region and draw the
# crosshairs
time.sleep(0.04)
M = cv2.moments(approx)
(cX, cY) = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
(startX, endX) = (int(cX - (w * 0.15)), int(cX + (w * 0.15)))
(startY, endY) = (int(cY - (h * 0.15)), int(cY + (h * 0.15)))
cv2.line(frame, (startX, cY), (endX, cY), (0, 0, 255), 3)
cv2.line(frame, (cX, startY), (cX, endY), (0, 0, 255), 3)
success,image = camera.read() ########################################################
print 'Read a new frame: ', success
cv2.imwrite("frame%d.jpg" % count, image) # save frame as JPEG file
count += 1
time.sleep(1.5) ###############################
# draw the status text on the frame
cv2.putText(frame, status, (20, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
(0, 0, 255), 2)
# show the frame and record if a key is pressed
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the 'q' key is pressed, stop the loop
if key == ord("q"):
break
# cleanup the camera and close any open windows
camera.release()
cv2.destroyAllWindows()
我可以使用哪些图像处理功能来校准HSV和阈值,并保存我们图像所需阈值的值?
例如,在这张图片中,由于光线良好,可以检测到pysquares(黑色),但是如果照明不像这样,这段代码找不到轮廓,我想要一个校准功能,我们在其中可以校准HSV值和阈值,使程序理解所需的数字。