当我创建模型时,我会这样做:
model <- keras_model_sequential()
model %>%
layer_1(...)
layer_2(...)
layer_3(...)
当我使用摘要时,summary(model)
:
Layer -- Connected to
layer_1 --
layer_2 -- layer_1
layer_3 -- layer_2
图层是一个接一个地添加的,但我该怎么做:
Layer -- Connected to
layer_1 --
layer_2 -- layer_1
layer_3 -- layer_1
我希望第2层和第3层连接到第1层。
答案 0 :(得分:2)
您可以使用keras_model
:
library(keras)
layer_1 <- layer_input(1)
layer_2 <- layer_1 %>% layer_dropout(0.4)
layer_3 <- layer_1 %>% layer_dropout(0.6)
model <- keras_model(
inputs = layer_1,
outputs = c(layer_2, layer_3)
)
summary(model)
输出:
___________________________________________________________________
Layer (type) Output Shape Param # Connected to
===================================================================
input_1 (InputLayer) (None, 1) 0
___________________________________________________________________
dropout_1 (Dropout) (None, 1) 0 input_1[0][0]
___________________________________________________________________
dropout_2 (Dropout) (None, 1) 0 input_1[0][0]
===================================================================
Total params: 0
Trainable params: 0
Non-trainable params: 0
___________________________________________________________________
这个例子非常虚拟,只是为了说明这一点。
答案 1 :(得分:0)
代码片段的另一个例子:
input1 = keras.layers.Input(shape=(16,))
x1 = keras.layers.Dense(8, activation='relu')(input1)
x2 = keras.layers.Dense(8, activation='relu')(input1)
added = keras.layers.add([x1, x2])
model = keras.models.Model(inputs=[input1], outputs=added)
model.summary()
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_44 (InputLayer) (None, 16) 0
__________________________________________________________________________________________________
dense_65 (Dense) (None, 8) 136 input_44[0][0]
__________________________________________________________________________________________________
dense_66 (Dense) (None, 8) 136 input_44[0][0]
__________________________________________________________________________________________________
add_92 (Add) (None, 8) 0 dense_65[0][0]
dense_66[0][0]
==================================================================================================
Total params: 272
Trainable params: 272
Non-trainable params: 0
__________________________________________________________________________________________________