Keras fit_generator具有多个输入层

时间:2019-04-28 00:43:07

标签: python keras deep-learning generator

我正在尝试为具有3个输入和一个处理文本数据的单个输出的模型实现自定义数据生成器,如下所示:

class FetchUrl {
  static async getJson(api) {
    try {
        const response = await fetch(api);
        if (response.ok) {
            const questions = await response.json();
            return questions;
        }
    } catch (error) {
        throw new Error("Request Failed!");
    }
  }
}

 FetchUrl.getJson(this.api).then((resolved) => {
        console.log(resolved)
// this sampe of code is executing even fetch is rejected.. what can i do 
to avoid it?
    }, rejected => {
        console.log(rejected)
    })
}

我找到了here的数据生成器代码,我想知道如何修改它以接受多个输入张量。

# dummy model
input_1 = Input(shape=(None,))
input_2 = Input(shape=(None,))
input_3 = Input(shape=(None,))     
combined = Concatenate(axis=-1)([input_1, input_2, input_3])
...
dense_1 = Dense(10, activation='relu')(combined)
output_1 = Dense(1, activation='sigmoid')(dense_1)

model = Model([input_1, input_2, input_3], output_1)
print(model.summary())

#Compile and fit_generator
model.compile(optimizer='adam', loss='binary_crossentropy')

train_data_gen = Generator([x1_train, x2_train, x3_train], y_train, batch_size)
test_data_gen = Generator([x1_test, x2_test, x3_test], y_test, batch_size)

model.fit_generator(generator=train_data_gen, validation_data = test_data_gen, epochs=epochs, verbose=1)

1 个答案:

答案 0 :(得分:2)

您需要做的就是如下修改Generator类。

class Generator(Sequence):
    # Class is a dataset wrapper for better training performance
    def __init__(self, x_set, y_set, batch_size=256):
        self.x, self.y = x_set, y_set
        self.batch_size = batch_size
        self.indices = np.arange(self.x[0].shape[0])

    def __len__(self):
        return math.floor(self.x[0].shape[0] / self.batch_size)

    def __getitem__(self, idx):
        inds = self.indices[idx * self.batch_size:(idx + 1) * self.batch_size]
        batch_x = [self.x[0][inds],self.x[1][inds],self.x[2][inds]]
        batch_y = self.y[inds]
        return batch_x, batch_y

    def on_epoch_end(self):
        np.random.shuffle(self.indices)