添加新列包含列中的值与另一列中符合指定条件的另一个值 例如, 原DF如下:
+-----+-----+-----+
|col1 |col2 |col3 |
+-----+-----+-----+
| A| 17| 1|
| A| 16| 2|
| A| 18| 2|
| A| 30| 3|
| B| 35| 1|
| B| 34| 2|
| B| 36| 2|
| C| 20| 1|
| C| 30| 1|
| C| 43| 1|
+-----+-----+-----+
对于每个col1组,我需要在col2中重复col3中与1相对应的值。如果col3中有更多值= 1,则col1中的任何组重复最小值 所需的Df如下:
+----+----+----+----------+
|col1|col2|col3|new_column|
+----+----+----+----------+
| A| 17| 1| 17|
| A| 16| 2| 17|
| A| 18| 2| 17|
| A| 30| 3| 17|
| B| 35| 1| 35|
| B| 34| 2| 35|
| B| 36| 2| 35|
| C| 20| 1| 20|
| C| 30| 1| 20|
| C| 43| 1| 20|
+----+----+----+----------+
答案 0 :(得分:1)
df3=df.filter(df.col3==1)
+----+----+----+
|col1|col2|col3|
+----+----+----+
| B| 35| 1|
| C| 20| 1|
| C| 30| 1|
| C| 43| 1|
| A| 17| 1|
+----+----+----+
df3.createOrReplaceTempView("mytable")
要获得col2的最小值,我按照此链接How to find exact median for grouped data in Spark
中接受的答案进行操作df6=spark.sql("select col1, min(col2) as minimum from mytable group by col1 order by col1")
df6.show()
+----+-------+
|col1|minimum|
+----+-------+
| A| 17|
| B| 35|
| C| 20|
+----+-------+
df_a=df.join(df6,['col1'],'leftouter')
+----+----+----+-------+
|col1|col2|col3|minimum|
+----+----+----+-------+
| B| 35| 1| 35|
| B| 34| 2| 35|
| B| 36| 2| 35|
| C| 20| 1| 20|
| C| 30| 1| 20|
| C| 43| 1| 20|
| A| 17| 1| 17|
| A| 16| 2| 17|
| A| 18| 2| 17|
| A| 30| 3| 17|
+----+----+----+-------+
有没有比这个解决方案更好的方法?