我试图从MySQL服务器查询数据并使用pandas .to_gbq api将其写入Google BigQuery。
def production_to_gbq(table_name_prod,prefix,table_name_gbq,dataset,project):
# Extract data from Production
q = """
SELECT *
FROM
{}
""".format(table_name_prod)
df = pd.read_sql(q, con)
# Write to gbq
df.to_gbq(dataset + table_name_gbq, project, chunksize=1000, verbose=True, reauth=False, if_exists='replace', private_key=None)
return df
我一直收到400错误,表示输入无效。
Load is 100.0% Complete
---------------------------------------------------------------------------
BadRequest Traceback (most recent call last)
/usr/local/lib/python3.6/site-packages/pandas_gbq/gbq.py in load_data(self, dataframe, dataset_id, table_id, chunksize, schema)
569 self.client, dataframe, dataset_id, table_id,
--> 570 chunksize=chunksize):
571 self._print("\rLoad is {0}% Complete".format(
/usr/local/lib/python3.6/site-packages/pandas_gbq/_load.py in load_chunks(client, dataframe, dataset_id, table_id, chunksize, schema)
73 destination_table,
---> 74 job_config=job_config).result()
/usr/local/lib/python3.6/site-packages/google/cloud/bigquery/job.py in result(self, timeout)
527 # TODO: modify PollingFuture so it can pass a retry argument to done().
--> 528 return super(_AsyncJob, self).result(timeout=timeout)
529
/usr/local/lib/python3.6/site-packages/google/api_core/future/polling.py in result(self, timeout)
110 # Pylint doesn't recognize that this is valid in this case.
--> 111 raise self._exception
112
BadRequest: 400 Error while reading data, error message: CSV table encountered too many errors, giving up. Rows: 10; errors: 1. Please look into the error stream for more details.
During handling of the above exception, another exception occurred:
GenericGBQException Traceback (most recent call last)
<ipython-input-73-ef9c7cec0104> in <module>()
----> 1 departments.to_gbq(dataset + table_name_gbq, project, chunksize=1000, verbose=True, reauth=False, if_exists='replace', private_key=None)
2
/usr/local/lib/python3.6/site-packages/pandas/core/frame.py in to_gbq(self, destination_table, project_id, chunksize, verbose, reauth, if_exists, private_key)
1058 return gbq.to_gbq(self, destination_table, project_id=project_id,
1059 chunksize=chunksize, verbose=verbose, reauth=reauth,
-> 1060 if_exists=if_exists, private_key=private_key)
1061
1062 @classmethod
/usr/local/lib/python3.6/site-packages/pandas/io/gbq.py in to_gbq(dataframe, destination_table, project_id, chunksize, verbose, reauth, if_exists, private_key)
107 chunksize=chunksize,
108 verbose=verbose, reauth=reauth,
--> 109 if_exists=if_exists, private_key=private_key)
/usr/local/lib/python3.6/site-packages/pandas_gbq/gbq.py in to_gbq(dataframe, destination_table, project_id, chunksize, verbose, reauth, if_exists, private_key, auth_local_webserver, table_schema)
980 connector.load_data(
981 dataframe, dataset_id, table_id, chunksize=chunksize,
--> 982 schema=table_schema)
983
984
/usr/local/lib/python3.6/site-packages/pandas_gbq/gbq.py in load_data(self, dataframe, dataset_id, table_id, chunksize, schema)
572 ((total_rows - remaining_rows) * 100) / total_rows))
573 except self.http_error as ex:
--> 574 self.process_http_error(ex)
575
576 self._print("\n")
/usr/local/lib/python3.6/site-packages/pandas_gbq/gbq.py in process_http_error(ex)
453 # <https://cloud.google.com/bigquery/troubleshooting-errors>`__
454
--> 455 raise GenericGBQException("Reason: {0}".format(ex))
456
457 def run_query(self, query, **kwargs):
GenericGBQException: Reason: 400 Error while reading data, error message: CSV table encountered too many errors, giving up. Rows: 10; errors: 1. Please look into the error stream for more details.
我已经调查了表格架构,
id INTEGER NULLABLE
name STRING NULLABLE
description STRING NULLABLE
created_at INTEGER NULLABLE
modified_at FLOAT NULLABLE
,它与数据帧相同:
id int64
name object
description object
created_at int64
modified_at float64
该表以GBQ创建,但仍为空。
我读了一下但是在pandas.to_gbq api上找不到多少,除了这看似相关但没有回复:
bigquery table is empty when using pandas to_gbq
我找到了一个关于对象数据类型中数字的潜在解决方案,它们被传递到没有引号的GBQ表中,通过将列数据类型设置为字符串来修复。
I use to_gbq on pandas for updating Google BigQuery and get GenericGBQException
我尝试了修复:
for col in df.columns:
if df[col].dtypes == object:
df[col] = df[col].fillna('')
df[col] = df[col].astype(str)
不幸的是我仍然遇到同样的错误。类似地,尝试格式化缺失数据并为int和float设置dtypes也会产生相同的错误。
我有什么遗失的吗?
答案 0 :(得分:2)
发现bigquery无法正确处理 \ r (有时 \ n ) 有同样的问题,本地化问题,当我用空格替换 \ r 时我真的很惊讶:
for col in list(df.columns):
df[col] = df[col].apply(lambda x: x.replace(u'\r', u' ') if isinstance(x, str) or isinstance(x, unicode) else x)
答案 1 :(得分:1)
当我遇到类似的问题时,我从云存储中的镶木地板文件导入到bigquery中遇到了类似的问题。但是,每次我忘记解决问题的方法时,我希望将我的发现留在这里并不过分违反协议!
我意识到我有全为NULL的列,看起来它们在pandas中具有数据类型,但是如果您使用pyarrow.parquet.read_schema(parquet_file),您将看到数据类型为null 。
删除该列后,上传将起作用!
答案 2 :(得分:0)
我在string
列中有一些无效字符(在object
中的pandas
中)。我使用@Echochi方法,并且有效
for col in list(parsed_data.select_dtypes(include='object').columns):
parsed_data[col] = parsed_data[col].apply(lambda x:re.sub('[^A-Za-z0-9]+','', str(x)))
对可接受的字符有一点限制,所以我使用了更通用的方法,因为与UTF-8
bigquery docs的双向查询兼容性
for col in list(parsed_data.select_dtypes(include='object').columns):
parsed_data[col] = parsed_data[col].apply(lambda x:re.sub(r"[^\u0900-\u097F]+",,'?', str(x)))
使用r"[^\u0900-\u097F]+"
,您将接受所有UTF-8
兼容的字符集