如何证明集合的补集是对合的?
Require Import Ensembles. Arguments In {_}. Arguments Complement {_}.
Variables (T:Type) (A:Ensemble T).
Axiom set_eq: forall (E1 E2:Ensemble T), (forall x, E1 x <-> E2 x) -> E1 = E2.
Lemma complement_involutive:
forall x, In (Complement (Complement A)) x -> In A x.
编辑:假设decidable (In A x)
允许firstorder
完全证明引理。
答案 0 :(得分:1)
complement_involutive
正好是~ ~ A x -> A x
,众所周知,它等同于被排除的中间,在这种情况下是Type
,因此在Coq中无法证明它不是公理。请参阅此回答https://math.stackexchange.com/questions/1370805/why-cant-you-prove-the-law-of-the-excluded-middle-in-intuitionistic-logic-for