对于作业,我需要使用蒙特卡罗方法估计Erlang中的pi,但是需要指定数量的actor和迭代。我有一个工作版本(改编自https://programmingpraxis.com/2009/10/09/calculating-pi/),它不使用并发,因此接受一个参数,N =迭代次数(点)。我试图通过创建另一个带有两个参数的montecarlo()函数来添加它,N =迭代次数和X = actor的数量。我无法弄清楚如何使用(伪)循环来生成每个actor。
之前的版本返回pi估计,但在我弄清楚产卵之后,我假设我必须对每个actor的返回值进行平均以进行最终的pi估计。
这就是我所拥有的:
-module(pi).
-export([montecarlo/1, montecarlo/2]).
montecarlo(N, X)->
NumIterPerActor = N div X,
%io:fwrite("Number of actors = ~w~n",[X]),
%io:fwrite("Number of iterations per actor = ~w~n",[NumIterPerActor]),
lists:seq(1, X),
spawn(pi, montecarlo, [NumIterPerActor]).
montecarlo(N)->
montecarlo(N,0,0).
montecarlo(0,InCircle,NumPoints)->
PiEst = 4*InCircle / NumPoints,
io:fwrite("Pi = ~w~n", [PiEst]);
montecarlo(N,InCircle,NumPoints)->
Xcoord = rand:uniform(),
Ycoord = rand:uniform(),
montecarlo(N-1,if Xcoord*Xcoord + Ycoord*Ycoord < 1 -> InCircle + 1; true -> InCircle end,NumPoints + 1).
从研究问题开始,我已经看过使用map(),但据我所知,你在map()中创建了一个新函数,而不是使用已经实现的函数。
编辑:
我没有在截止日期前收到任何建议(我等了这么久的错误),所以我向同学寻求帮助,想出了一个递归的解决方案:
-module(pi).
-export([montecarlo/1, montecarlo/2, assign/3, compute/2, addPi/3]).
montecarlo(N, X)->
NumIterPerActor = N div X, %number of iterations for each actor
io:fwrite("Number of actors = ~w~n",[X]),
io:fwrite("Number of iterations per actor = ~w~n",[NumIterPerActor]),
%Actors = lists:seq(1, X), %generate desired number of actors
%Pi1 = spawn(pi, montecarlo, [NumIterPerActor]),
%Pi2 = spawn(pi, montecarlo, [NumIterPerActor]).
ReceiverID = spawn(pi, addPi, [0, X, X]),
assign(ReceiverID, X, NumIterPerActor).
assign(ReceiverID, 1, Iter)->
spawn(pi, compute, [Iter, ReceiverID]);
assign(ReceiverID, X, Iter)->
spawn(pi, compute, [Iter, ReceiverID]),
assign(ReceiverID, X-1, Iter).
compute(Iter, ReceiverID)->
Est = montecarlo(Iter),
ReceiverID ! {Est}.
addPi(Pies, X, 0)->
FinalPi = Pies/X,
io:fwrite("Pi = ~w~n", [FinalPi]);
addPi(Pies, X, Rem)->
receive
{Estimate} ->
addPi(Pies+Estimate, X, Rem-1)
end.
montecarlo(N)->
montecarlo(N,0,0).
montecarlo(0,InCircle,NumPoints)->
4*InCircle / NumPoints;
%io:fwrite("Pi = ~w~n", [PiEst]);
montecarlo(N,InCircle,NumPoints)->
Xcoord = rand:uniform(),
Ycoord = rand:uniform(),
montecarlo(N-1,if Xcoord*Xcoord + Ycoord*Ycoord < 1 -> InCircle + 1; true -> InCircle end,NumPoints + 1).
答案 0 :(得分:1)
<input type='button' value="Approve" id="Approve" class="btn<%=details._id%>"/>
<input type='button' value="Disapprove" id="Disapprove" class="btn<%=details._id%>"/>
</form>
<script>
$(document).ready(function(){
$('.btn').on('click',function(){
var id=this.className.slice(4);
$.ajax({
type:'GET',
url:'/principal/leave/approval/'+id,
data:{approval:this.id},
success:function(data){
alert('success');
}
});
});
});
</script>
似乎非常适合你需要迭代地处理副作用,例如产生一个过程。
您可以lists:foreach/2
map/2
进入NumIterPerActor
列表并使用IterList
迭代生成流程。
foreach/2
要回答你的上一个问题,请注意在montecarlo(N, X) ->
NumIterPerActor = N div X,
IterList = lists:map(fun(_) -> NumIterPerActor end, lists:seq(1, X)),
lists:foreach(fun(IPA) -> spawn(?MODULE, montecarlo, [IPA]) end, IterList).
或map/2
内你可以在lambda函数中包装任何函数调用并将相关参数传递给它。