我是spacy和python的新手,我正在使用python和nltk训练我自己的spacy模型,这是我的代码,我训练数据和测试数据,如果我提供与文本数据相同的测试数据,输出是正确的我无法识别超过2个标签,每次我编译代码标签识别是不同的和不正确的,我已经提到spacy网站,但我无法得到解决方案。请帮帮我!!
from __future__ import unicode_literals, print_function
import plac
import random
from pathlib import Path
import spacy
# new entity label
# training data
# Note: If you're using an existing model, make sure to mix in examples of
# other entity types that spaCy correctly recognized before. Otherwise, your
# model might learn the new type, but "forget" what it previously knew.
# https://explosion.ai/blog/pseudo-rehearsal-catastrophic-forgetting
TRAIN_DATA = [
("Duck quacks, Dog barks", {
'entities': [(0,4,'Bird'), (13,16,'Animal')]
}),
("Duck eats fish, Dog eats meat", {
'entities': [(0,4,'Bird'), (16,19,'Animal')]
}),
("Duck eats fish, Dog eats meat", {
'entities': [(0,4,'Bird'), (16,19,'Animal')]
})
]
@plac.annotations(
model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
new_model_name=("New model name for model meta.", "option", "nm", str),
output_dir=("Optional output directory", "option", "o", Path),
n_iter=("Number of training iterations", "option", "n", int))
def main(model=None, new_model_name='Animal', output_dir=None, n_iter=20):
"""Set up the pipeline and entity recognizer, and train the new
entity."""
if model is not None:
nlp = spacy.load(model) # load existing spaCy model
print("Loaded model '%s'" % model)
else:
nlp = spacy.blank('en') # create blank Language class
print("Created blank 'en' model")
# Add entity recognizer to model if it's not in the pipeline
# nlp.create_pipe works for built-ins that are registered with spaCy
if 'ner' not in nlp.pipe_names:
ner = nlp.create_pipe('ner')
nlp.add_pipe(ner)
# otherwise, get it, so we can add labels to it
else:
ner = nlp.get_pipe('ner')
# add new entity label to entity recognizer
for _, annotations in TRAIN_DATA:
for ent in annotations.get('entities'):
ner.add_label(ent[2])
print("Label '%s'" % ent[2])
# get names of other pipes to disable them during training
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner']
with nlp.disable_pipes(*other_pipes): # only train NER
optimizer = nlp.begin_training()
for itn in range(n_iter):
random.shuffle(TRAIN_DATA)
losses = {}
for text, annotations in TRAIN_DATA:
nlp.update([text], [annotations], sgd=optimizer, drop=0.35,
losses=losses)
print(losses)
# test the trained model
test_text = 'Duck eats Nippot, Dog eats meat'
doc = nlp(test_text)
print("Entities in '%s'" % test_text)
for ent in doc.ents:
print(ent.label_, ent.text)
# save model to output directory
if output_dir is not None:
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
nlp.meta['name'] = new_model_name # rename model
nlp.to_disk(output_dir)
print("Saved model to", output_dir)
# test the saved model
print("Loading from", output_dir)
nlp2 = spacy.load(output_dir)
doc2 = nlp2(test_text)
for ent in doc2.ents:
print(ent.label_, ent.text)
if __name__ == '__main__':
plac.call(main)
答案 0 :(得分:0)
更改是脚本中的优化程序代码。另外,避免添加重复的标签,这样可以创建标签列表,然后通过ner.add_label
添加标签。
TRAIN_DATA = [
("Duck quacks, Dog barks", {
'entities': [(0,4,'Bird'), (13,16,'Animal')]
}),
("Duck eats fish, Dog eats meat", {
'entities': [(0,4,'Bird'), (16,19,'Animal')]
}),
("Duck eats fish, Dog eats meat", {
'entities': [(0,4,'Bird'), (16,19,'Animal')]
})
]
label_ = ['Bird', 'Animal']
@plac.annotations(
model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
new_model_name=("New model name for model meta.", "option", "nm", str),
output_dir=("Optional output directory", "option", "o", Path),
n_iter=("Number of training iterations", "option", "n", int))
def main(model=None, new_model_name='Animal', output_dir=None, n_iter=20):
"""Set up the pipeline and entity recognizer, and train the new
entity."""
if model is not None:
nlp = spacy.load(model) # load existing spaCy model
print("Loaded model '%s'" % model)
else:
nlp = spacy.blank('en') # create blank Language class
print("Created blank 'en' model")
# Add entity recognizer to model if it's not in the pipeline
# nlp.create_pipe works for built-ins that are registered with spaCy
if 'ner' not in nlp.pipe_names:
ner = nlp.create_pipe('ner')
nlp.add_pipe(ner)
# otherwise, get it, so we can add labels to it
else:
ner = nlp.get_pipe('ner')
# add new entity label to entity recognizer
# for _, annotations in TRAIN_DATA:
# for ent in annotations.get('entities'):
# ner.add_label(ent[2])
# print("Label '%s'" % ent[2])
for LABEL in label_: # add new entity label to entity recognizer
ner.add_label(LABEL) # this way you avoid adding duplicate labels.
if model is None:
optimizer = nlp.begin_training()
# Note that 'begin_training' initializes the models, so it'll zero out
# existing entity types.
else:
optimizer = nlp.entity.create_optimizer()
# get names of other pipes to disable them during training
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner']
with nlp.disable_pipes(*other_pipes): # only train NER
# optimizer = nlp.begin_training() # made changes above for the same
for itn in range(n_iter):
random.shuffle(TRAIN_DATA)
losses = {}
for text, annotations in TRAIN_DATA:
nlp.update([text], [annotations], sgd=optimizer, drop=0.35,
losses=losses)
print(losses)
# test the trained model
test_text = 'Duck and Dog eats Nippot, Dog eats meat'
doc = nlp(test_text)
print("Entities in '%s'" % test_text)
for ent in doc.ents:
print(ent.label_, ent.text)
# save model to output directory
if output_dir is not None:
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
nlp.meta['name'] = new_model_name # rename model
nlp.to_disk(output_dir)
print("Saved model to", output_dir)
# test the saved model
print("Loading from", output_dir)
nlp2 = spacy.load(output_dir)
doc2 = nlp2(test_text)
for ent in doc2.ents:
print(ent.label_, ent.text)
输出:
Entities in 'Duck and Dog eats Nippot, Dog eats meat'
Bird Duck
Animal Dog
Animal Dog