Hadoop MapReduce - Euler的Totient / Sum of Totient(和其他数学运算)

时间:2018-04-02 05:17:39

标签: java hadoop cluster-computing

作为我学习的一部分,我正致力于使用不同的并行计算语言实现一个商之和(Euler's Totient),而且我很擅长使用MapReduce。 主要目标是在运行时,效率等方面做一些基准测试......

我的代码现在正在运行,我得到了正确的输出,但它很慢,我想知道为什么。

是因为我的实现还是因为Hadoop MadReduce不是为此目的而制作的。 我还实现了一个组合器,因为从我读到的它应该优化代码,但事实并非如此。 对不起,如果这个问题看起来很愚蠢,但我没有在互联网上找到任何东西,而且我已经厌倦了尝试一切而没有任何结果。

我的输入文件的值范围是1到15000

1 2 3 4 5 6 ... 14998 14999 15000

我正在研究一个包含32个节点的集群,我的目标是让每个节点计算我的范围的一部分(组合器),然后对reducer中组合器的所有“子总和”求和。

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class NewTotient {

  public static long hcf(long x, long y)
  {
    long t;

    while (y != 0) {
      t = x % y;
      x = y;
      y = t;
    }
    return x;
  }

  public static boolean relprime(long x, long y)
  {
    return hcf(x, y) == 1;
  }

  public static long euler(long n)
  {
    long length, i;

    length = 0;
    for (i = 1; i < n; i++)
      if (relprime(n, i))
        length++;
    return length;
  }

  public static class TotientMapper extends Mapper<LongWritable, Text, Text, IntWritable>{

    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        for (String val : value.toString().split(" ")) {
            context.write(new Text(), new IntWritable(Integer.valueOf(val)));
        }
    }
  }

  public static class TotientCombiner extends Reducer<Text,IntWritable,Text,IntWritable> {
    //private IntWritable result = new IntWritable();

    protected void reduce(Text key, Iterable<IntWritable> values, Context context)throws IOException, InterruptedException {
          int sum = 0;
          for (IntWritable val : values) {
              sum += NewTotient.euler(val.get());
          }
      }
  }

  public static class TotientReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
    //private IntWritable result = new IntWritable();

    protected void reduce(Text key, Iterable<IntWritable> values, Context context)throws IOException, InterruptedException {
          int sum = 1;
          for (IntWritable val : values) {
              sum += val.get();
          }
          context.write(null, new IntWritable(sum));
      }
  }

  public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    System.out.println("\n\n__________________________________________________________\n"+"Starting Job\n"+"__________________________________________________________\n\n");
    final long startTime = System.currentTimeMillis();

    Job job = Job.getInstance(conf, "Sum of Totient");
    job.setJarByClass(NewTotient.class);
    job.setMapperClass(TotientMapper.class);
    job.setCombinerClass(TotientCombiner.class);
    job.setReducerClass(TotientReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    //job.setOutputKeyClass(Text.class);
    //job.setOutputValueClass(Text.class);
    FileInputFormat.addInputPath(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));

    job.waitForCompletion(true);
    final double duration = (System.currentTimeMillis() - startTime)/1000.0;
    System.out.println("\n\n__________________________________________________________\n"+"Job Finished in " + duration + " seconds\n"+"__________________________________________________________\n\n");
    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}

如果它可以帮助我的数据集输出从0到10(所以基本上我只计算10个第一个Totient的总和:

__________________________________________________________
Starting Job
__________________________________________________________


2018-04-02 06:09:27,583 INFO client.RMProxy: Connecting to ResourceManager at bwlf32/137.195.143.132:33312
2018-04-02 06:09:28,377 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
2018-04-02 06:09:28,423 INFO mapreduce.JobResourceUploader: Disabling Erasure Coding for path: /tmp/hadoop-yarn/staging/jo20/.staging/job_1522471222360_0016
2018-04-02 06:09:28,775 INFO input.FileInputFormat: Total input files to process : 1
2018-04-02 06:09:29,029 INFO mapreduce.JobSubmitter: number of splits:1
2018-04-02 06:09:29,101 INFO Configuration.deprecation: yarn.resourcemanager.system-metrics-publisher.enabled is deprecated. Instead, use yarn.system-metrics-publisher.enabled
2018-04-02 06:09:29,288 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1522471222360_0016
2018-04-02 06:09:29,290 INFO mapreduce.JobSubmitter: Executing with tokens: []
2018-04-02 06:09:29,538 INFO conf.Configuration: resource-types.xml not found
2018-04-02 06:09:29,539 INFO resource.ResourceUtils: Unable to find 'resource-types.xml'.
2018-04-02 06:09:29,628 INFO impl.YarnClientImpl: Submitted application application_1522471222360_0016
2018-04-02 06:09:29,687 INFO mapreduce.Job: The url to track the job: http://bwlf32:33314/proxy/application_1522471222360_0016/
2018-04-02 06:09:29,688 INFO mapreduce.Job: Running job: job_1522471222360_0016
2018-04-02 06:09:37,849 INFO mapreduce.Job: Job job_1522471222360_0016 running in uber mode : false
2018-04-02 06:09:37,852 INFO mapreduce.Job:  map 0% reduce 0%
2018-04-02 06:09:44,960 INFO mapreduce.Job:  map 100% reduce 0%
2018-04-02 06:09:52,008 INFO mapreduce.Job:  map 100% reduce 100%
2018-04-02 06:09:52,022 INFO mapreduce.Job: Job job_1522471222360_0016 completed successfully
2018-04-02 06:09:52,178 INFO mapreduce.Job: Counters: 53
    File System Counters
        FILE: Number of bytes read=6
        FILE: Number of bytes written=414497
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=123
        HDFS: Number of bytes written=0
        HDFS: Number of read operations=8
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=2
    Job Counters
        Launched map tasks=1
        Launched reduce tasks=1
        Rack-local map tasks=1
        Total time spent by all maps in occupied slots (ms)=9126
        Total time spent by all reduces in occupied slots (ms)=9688
        Total time spent by all map tasks (ms)=4563
        Total time spent by all reduce tasks (ms)=4844
        Total vcore-milliseconds taken by all map tasks=4563
        Total vcore-milliseconds taken by all reduce tasks=4844
        Total megabyte-milliseconds taken by all map tasks=1168128
        Total megabyte-milliseconds taken by all reduce tasks=1240064
    Map-Reduce Framework
        Map input records=1
        Map output records=10
        Map output bytes=50
        Map output materialized bytes=6
        Input split bytes=102
        Combine input records=10
        Combine output records=0
        Reduce input groups=0
        Reduce shuffle bytes=6
        Reduce input records=0
        Reduce output records=0
        Spilled Records=0
        Shuffled Maps =1
        Failed Shuffles=0
        Merged Map outputs=1
        GC time elapsed (ms)=157
        CPU time spent (ms)=2220
        Physical memory (bytes) snapshot=507772928
        Virtual memory (bytes) snapshot=3889602560
        Total committed heap usage (bytes)=347078656
        Peak Map Physical memory (bytes)=306073600
        Peak Map Virtual memory (bytes)=1945808896
        Peak Reduce Physical memory (bytes)=201699328
        Peak Reduce Virtual memory (bytes)=1943793664
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
        WRONG_LENGTH=0
        WRONG_MAP=0
        WRONG_REDUCE=0
    File Input Format Counters
        Bytes Read=21
    File Output Format Counters
        Bytes Written=0


__________________________________________________________
Job Finished in 26.225 seconds
__________________________________________________________


2018-04-02 06:09:52,182 INFO mapreduce.Job: Running job: job_1522471222360_0016
2018-04-02 06:09:52,188 INFO mapreduce.Job: Job job_1522471222360_0016 running in uber mode : false
2018-04-02 06:09:52,188 INFO mapreduce.Job:  map 100% reduce 100%
2018-04-02 06:09:52,193 INFO mapreduce.Job: Job job_1522471222360_0016 completed successfully
2018-04-02 06:09:52,201 INFO mapreduce.Job: Counters: 53
    File System Counters
        FILE: Number of bytes read=6
        FILE: Number of bytes written=414497
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=123
        HDFS: Number of bytes written=0
        HDFS: Number of read operations=8
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=2
    Job Counters
        Launched map tasks=1
        Launched reduce tasks=1
        Rack-local map tasks=1
        Total time spent by all maps in occupied slots (ms)=9126
        Total time spent by all reduces in occupied slots (ms)=9688
        Total time spent by all map tasks (ms)=4563
        Total time spent by all reduce tasks (ms)=4844
        Total vcore-milliseconds taken by all map tasks=4563
        Total vcore-milliseconds taken by all reduce tasks=4844
        Total megabyte-milliseconds taken by all map tasks=1168128
        Total megabyte-milliseconds taken by all reduce tasks=1240064
    Map-Reduce Framework
        Map input records=1
        Map output records=10
        Map output bytes=50
        Map output materialized bytes=6
        Input split bytes=102
        Combine input records=10
        Combine output records=0
        Reduce input groups=0
        Reduce shuffle bytes=6
        Reduce input records=0
        Reduce output records=0
        Spilled Records=0
        Shuffled Maps =1
        Failed Shuffles=0
        Merged Map outputs=1
        GC time elapsed (ms)=157
        CPU time spent (ms)=2220
        Physical memory (bytes) snapshot=507772928
        Virtual memory (bytes) snapshot=3889602560
        Total committed heap usage (bytes)=347078656
        Peak Map Physical memory (bytes)=306073600
        Peak Map Virtual memory (bytes)=1945808896
        Peak Reduce Physical memory (bytes)=201699328
        Peak Reduce Virtual memory (bytes)=1943793664
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
        WRONG_LENGTH=0
        WRONG_MAP=0
        WRONG_REDUCE=0
    File Input Format Counters
        Bytes Read=21
    File Output Format Counters
        Bytes Written=0

在java中使用我的顺序代码会更快:

real    0m0.512s
user    0m0.279s
sys     0m0.142s

为了清楚起见,我必须使用这种计算方式,因为它足够慢,可以在不同的系统之间进行有趣的比较,即使我知道,也无法使用更智能的计算方法来提高系统的速度有计算所有素数因子及其倍数的想法,并从n中减去此计数以得到完整的函数值(素数因子和素数因子的倍数不会将gcd设为1)。

1 个答案:

答案 0 :(得分:2)

在这里,您将从一行文件中提供输入。映射器中使用的键是新行,因此只有一行,它将由单个映射任务处理,因此它不会并行处理输入。 您可以做的一件事是,以新行而不是空格提供每个输入数字,并相应地更改映射器。 此外,组合器在这里没有多大意义,因为你没有在地图输出中使用不同的键