我有这个等式a *(t ^ alpha)*(p_p ^ beta),我想适合得到alpha和beta值,其中t和p_p是独立变量。我的问题是如何编写最终拟合模型(结果)表达式。
result = model.fit(S_L1, params, t=t, p_p=p_p)
我尝试了类似上面的表达式,但我收到了这个错误:
ValueError: The input contains nan values
# Calculating unburned mass temperature
T_u = T_i*(p_filter/p_i)**((k_u-1)/k_u) # Linear unburned temperature
t = T_u/T_i
p_p = p_filter/p_i
# Model function.
def mod_m(t, p_p, a=1, alpha=1,beta=1): # Define function with initial guesses
return a*(t**alpha)*(p_p**beta) # Function for fitting
# Fitting model.
model = Model(mod_m, independent_vars=['t','p_p'] )
# Making a set of parameters:
params = model.make_params(a=10)
# Setting min/max bounds on parameters:
params['alpha'].min = 0.0
params['beta'].min = 0.0
params['a'].min = 0.0
params['a'].max = 1e6
# Run the fit with Model.fit(Data_Array, Parameters, independent vars).
result = model.fit(S_L1, params, t=t, p_p=p_p)
答案 0 :(得分:1)
这是一个使用您的函数和测试数据的Python 3示例。这使用scipy.optimize.curve_fit()进行多元回归,并创建3D数据散点图,拟合函数的3D曲面图和拟合函数的等高线图。请注意,我使用curve_fit的默认scipy初始参数。
import numpy, scipy, scipy.optimize
import matplotlib
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm # to colormap 3D surfaces from blue to red
import matplotlib.pyplot as plt
graphWidth = 800 # units are pixels
graphHeight = 600 # units are pixels
# 3D contour plot lines
numberOfContourLines = 16
def SurfacePlot(func, data, fittedParameters):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
matplotlib.pyplot.grid(True)
axes = Axes3D(f)
x_data = data[0]
y_data = data[1]
z_data = data[2]
xModel = numpy.linspace(min(x_data), max(x_data), 20)
yModel = numpy.linspace(min(y_data), max(y_data), 20)
X, Y = numpy.meshgrid(xModel, yModel)
Z = func(numpy.array([X, Y]), *fittedParameters)
axes.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=1, antialiased=True)
axes.scatter(x_data, y_data, z_data) # show data along with plotted surface
axes.set_title('Surface Plot (click-drag with mouse)') # add a title for surface plot
axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label
axes.set_zlabel('Z Data') # Z axis data label
plt.show()
plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems
def ContourPlot(func, data, fittedParameters):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
axes = f.add_subplot(111)
x_data = data[0]
y_data = data[1]
z_data = data[2]
xModel = numpy.linspace(min(x_data), max(x_data), 20)
yModel = numpy.linspace(min(y_data), max(y_data), 20)
X, Y = numpy.meshgrid(xModel, yModel)
Z = func(numpy.array([X, Y]), *fittedParameters)
axes.plot(x_data, y_data, 'o')
axes.set_title('Contour Plot') # add a title for contour plot
axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label
CS = matplotlib.pyplot.contour(X, Y, Z, numberOfContourLines, colors='k')
matplotlib.pyplot.clabel(CS, inline=1, fontsize=10) # labels for contours
plt.show()
plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems
def ScatterPlot(data):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
matplotlib.pyplot.grid(True)
axes = Axes3D(f)
x_data = data[0]
y_data = data[1]
z_data = data[2]
axes.scatter(x_data, y_data, z_data)
axes.set_title('Scatter Plot (click-drag with mouse)')
axes.set_xlabel('X Data')
axes.set_ylabel('Y Data')
axes.set_zlabel('Z Data')
plt.show()
plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems
def func(data, a, alpha, beta):
t = data[0]
p_p = data[1]
return a * (t**alpha) * (p_p**beta)
if __name__ == "__main__":
xData = numpy.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0])
yData = numpy.array([11.0, 12.1, 13.0, 14.1, 15.0, 16.1, 17.0, 18.1, 90.0])
zData = numpy.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.0, 9.9])
data = [xData, yData, zData]
# this example uses curve_fit()'s default initial paramter values
fittedParameters, pcov = scipy.optimize.curve_fit(func, [xData, yData], zData)
ScatterPlot(data)
SurfacePlot(func, data, fittedParameters)
ContourPlot(func, data, fittedParameters)
print('fitted prameters', fittedParameters)
答案 1 :(得分:0)
您的问题是“如何编写最终拟合模型(结果)表达式?”。你已经用
自己回答了这个问题def mod_m(t, p_p, a=1, alpha=1,beta=1):
return a*(t**alpha)*(p_p**beta)
model = Model(mod_m, independent_vars=['t','p_p'] )
是的,这正是如何编写拟合模型。
这本身不会导致异常
ValueError: The input contains nan values
导致ValueError
的原因是你的拟合函数使用你给出的参数和自变量的值生成nan
值。那么......你为那些人传递了什么价值?
我建议打印出模型函数中参数的值,以及自变量的值。为了清楚起见,求幂很容易产生大于1e308的值,这将给出inf
,并导致你看到的异常。因此,您可能必须更加小心允许哪些参数值,这可能对自变量的值敏感。