我有一个问题是使用mlr获得部分依赖图以便我正常工作。不知何故,概率不是plottet,而只是类标签。我怀疑,在创建部分依赖性数据期间,目标可能会丢失。
有什么想法吗?
library(mlr)
library(dplyr)
library(ranger)
# select subset
iris_bin <- iris %>%
filter(Species != "virginica") %>%
mutate(bin_target = ifelse(Species == "setosa", TRUE, FALSE)) %>%
select(-Species)
# fit model
task_bin <- makeClassifTask(data = iris_bin, target = "bin_target")
lrn_bin <- makeLearner("classif.ranger", predict.type = "prob")
fit_bin <- train(lrn_bin, task_bin)
# create partial dependence plot
pd <- generatePartialDependenceData(fit_bin, task_bin, "Sepal.Length")
pd # is the target correct?
#> PartialDependenceData
#> Task: iris_bin
#> Features: Sepal.Length
#> Target: FALSE
#> Derivative: FALSE
#> Interaction: FALSE
#> Individual: FALSE
#> FALSE Sepal.Length
#> 1: 0.4920347 4.3
#> 2: 0.4920347 4.6
#> 3: 0.4935947 4.9
#> 4: 0.4945947 5.2
#> 5: 0.5104600 5.5
#> 6: 0.5107800 5.8
#> ... (#rows: 10, #cols: 2)
plotPartialDependence(pd)
这将是我当前会议的详细信息,也许这会有所帮助?:
Session info ---------------------------------------------
setting value
version R version 3.4.2 (2017-09-28)
system x86_64, mingw32
ui RStudio (1.1.383)
language (EN)
collate German_Germany.1252
tz Europe/Berlin
date 2018-03-29
Packages ----------------------------------------------------
package * version date source
assertthat 0.2.0 2017-04-11 CRAN (R 3.4.3)
backports 1.1.2 2017-12-13 CRAN (R 3.4.3)
base * 3.4.2 2017-09-28 local
BBmisc 1.11 2017-03-10 CRAN (R 3.4.3)
bindr 0.1.1 2018-03-13 CRAN (R 3.4.2)
bindrcpp * 0.2 2017-06-17 CRAN (R 3.4.3)
checkmate 1.8.5 2017-10-24 CRAN (R 3.4.3)
colorspace 1.3-2 2016-12-14 CRAN (R 3.4.3)
compiler 3.4.2 2017-09-28 local
data.table 1.10.4-3 2017-10-27 CRAN (R 3.4.3)
datasets * 3.4.2 2017-09-28 local
devtools 1.13.5 2018-02-18 CRAN (R 3.4.3)
digest 0.6.15 2018-01-28 CRAN (R 3.4.3)
dplyr * 0.7.4 2017-09-28 CRAN (R 3.4.3)
ggplot2 2.2.1.9000 2018-03-26 Github (tidyverse/ggplot2@3c9c504)
glue 1.2.0 2017-10-29 CRAN (R 3.4.3)
graphics * 3.4.2 2017-09-28 local
grDevices * 3.4.2 2017-09-28 local
grid 3.4.2 2017-09-28 local
gtable 0.2.0 2016-02-26 CRAN (R 3.4.3)
labeling 0.3 2014-08-23 CRAN (R 3.4.1)
lattice 0.20-35 2017-03-25 CRAN (R 3.4.2)
lazyeval 0.2.1 2017-10-29 CRAN (R 3.4.3)
magrittr 1.5 2014-11-22 CRAN (R 3.4.3)
Matrix 1.2-11 2017-08-21 CRAN (R 3.4.2)
memoise 1.1.0 2017-04-21 CRAN (R 3.4.3)
methods * 3.4.2 2017-09-28 local
mlr * 2.13 2018-03-28 Github (mlr-org/mlr@a9036e3)
mmpf * 0.0.4 2017-12-05 CRAN (R 3.4.4)
munsell 0.4.3 2016-02-13 CRAN (R 3.4.3)
parallel 3.4.2 2017-09-28 local
parallelMap 1.3 2015-06-10 CRAN (R 3.4.3)
ParamHelpers * 1.11 2018-02-19 Github (berndbischl/ParamHelpers@59c649e)
pillar 1.2.1 2018-02-27 CRAN (R 3.4.3)
pkgconfig 2.0.1 2017-03-21 CRAN (R 3.4.3)
plyr 1.8.4 2016-06-08 CRAN (R 3.4.3)
R6 2.2.2 2017-06-17 CRAN (R 3.4.3)
ranger * 0.9.0 2018-01-09 CRAN (R 3.4.3)
Rcpp 0.12.16 2018-03-13 CRAN (R 3.4.2)
rlang 0.2.0.9001 2018-03-26 Github (r-lib/rlang@49d7a34)
rstudioapi 0.7 2017-09-07 CRAN (R 3.4.3)
scales 0.5.0 2017-08-24 CRAN (R 3.4.4)
splines 3.4.2 2017-09-28 local
stats * 3.4.2 2017-09-28 local
stringi 1.1.7 2018-03-12 CRAN (R 3.4.2)
survival 2.41-3 2017-04-04 CRAN (R 3.4.2)
tibble 1.4.2 2018-01-22 CRAN (R 3.4.3)
tools 3.4.2 2017-09-28 local
utils * 3.4.2 2017-09-28 local
withr 2.1.2 2018-03-26 Github (jimhester/withr@79d7b0d)
XML 3.98-1.10 2018-02-19 CRAN (R 3.4.3)
yaml 2.1.18 2018-03-08 CRAN (R 3.4.3)
答案 0 :(得分:2)
希望mlr
软件包维护者可以提供帮助(我不使用该软件包)。但是,在此期间,您可以直接调整模型,只需使用pdp
包:
fit <- ranger(as.factor(bin_target) ~ ., data = iris_bin,
probability = TRUE)
library(ggplot2)
library(pdp)
pd <- partial(fit, pred.var = "Sepal.Length", prob = TRUE)
autoplot(pd)
请注意在prob = TRUE
的调用中使用partial
。另外,ggplot2
不是必需的,因为您可以使用plotPartial(pd)
代替lattice
图片。
此外,您仍然可以使用mlr
调整模型,然后使用partial
;例如,
library(mlr)
library(dplyr)
library(ranger)
library(pdp)
# select subset
iris_bin <- iris %>%
filter(Species != "virginica") %>%
mutate(bin_target = ifelse(Species == "setosa", TRUE, FALSE)) %>%
select(-Species)
# fit model
task_bin <- makeClassifTask(data = iris_bin, target = "bin_target")
lrn_bin <- makeLearner("classif.ranger", predict.type = "prob")
fit_bin <- train(lrn_bin, task_bin)
# partial dependence plot
mod <- getLearnerModel(fit_bin) # EXTRACT THE MODEL!! <<--
partial(mod, pred.var = "Sepal.Length", prob = TRUE,
plot = TRUE, train = iris_bin)
但请注意,需要通过train
参数提供原始训练数据。