LSTM在预先训练的CNN之上

时间:2018-03-28 13:08:48

标签: tensorflow keras conv-neural-network lstm

我已经训练了一个CNN,现在我想加载模型然后在顶部放一个LSTM但是我遇到了一些错误。

'''
Load the output of the CNN
'''
cnn_model = load_model(os.path.join('weights', 'CNN_patch_epoch-20.hdf5'))

last_layer = cnn_model.get_layer('pool5').output    

''' Freeze previous layers '''
for layer in cnn_model.layers:
    layer.trainable = False

x = TimeDistributed(Flatten())(last_layer)
x = LSTM(neurons, dropout=dropout, name='lstm')(x)
out = Dense(n_output, kernel_initializer=weight_init, name='out')(x)

model = Model(inputs=[cnn_model.input], outputs=out)

model.summary() 

我不确定在哪里指定我想要5帧(图像)。所以我的输入是(None, 5, 224, 224, 3)。所以我的问题是我应该在哪里指定它?

由于

1 个答案:

答案 0 :(得分:2)

您也可以将cnn_model包装在TimeDistributed包装中。

frames = Input(shape=(5, 224, 224, 3))
x = TimeDistributed(cnn_model)(frames)
x = TimeDistributed(Flatten())(x)
x = LSTM(neurons, dropout=dropout, name='lstm')(x)
out = Dense(n_output, kernel_initializer=weight_init, name='out')(x)
model = Model(inputs=frames, outputs=out)