当我.pb文件传输到.tflite时,我收到一个错误

时间:2018-03-27 19:36:44

标签: tensorflow keras bazel

我用keras在python中训练模型。我将模型保存为.h5文件,然后使用.h5文件的脚本到.pb文件。你可以看到我的剧本:

 
from tensorflow.python.framework import graph_util
from tensorflow.python.framework import graph_io
from keras.models import load_model
from keras import backend as K
import os.path as osp
import os
import tensorflow as tf

model = load_model("/media/hsmnzaydn/8AD030E8D030DBDF/Projects/Machine Learning/Basic Keras/CancerDetected/modelim.h5")
nb_classes = 1 # The number of output nodes in the model
prefix_output_node_names_of_final_network = 'output_node'

K.set_learning_phase(0)

pred = [None]*nb_classes
pred_node_names = [None]*nb_classes
for i in range(nb_classes):
    pred_node_names[i] = prefix_output_node_names_of_final_network+str(i)
    pred[i] = tf.identity(model.output[i], name=pred_node_names[i])
print('output nodes names are: ', pred_node_names)

sess = K.get_session()
output_fld = 'tensorflow_model/'
if not os.path.isdir(output_fld):
    os.mkdir(output_fld)
output_graph_name = "./" + '.pb'
output_graph_suffix = '_inference'

constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph.as_graph_def(), pred_node_names)
graph_io.write_graph(constant_graph, output_fld, output_graph_name, as_text=False)
print('saved the constant graph (ready for inference) at: ', osp.join(output_fld, output_graph_name))

我在tensorflow根文件中移动.pb文件。我尝试.pb文件的bazel命令到.lite文件我这样使用bazel命令

bazel-bin/tensorflow/contrib/lite/toco/toco --input_file=modelim.pb --input_format=TENSORFLOW_GRAPHDEF --output_format=TFLITE --output_file=modelim.lite --inference_type=FLOAT --input_type=FLOAT --input_arrays=dense_1_input --output_arrays=output_node0 --input_shapes=1,2

但我收到此错误

2018-03-27 22:23:18.655997: W tensorflow/contrib/lite/toco/toco_cmdline_flags.cc:183] --input_type is deprecated. It was an ambiguous flag that set both --input_data_types and --inference_input_type. If you are trying to complement the input file with information about the type of input arrays, use --input_data_type. If you are trying to control the quantization/dequantization of real-numbers input arrays in the output file, use --inference_input_type.
2018-03-27 22:23:18.656633: I tensorflow/contrib/lite/toco/graph_transformations/graph_transformations.cc:39] Before Removing unused ops: 17 operators, 27 arrays (0 quantized)
2018-03-27 22:23:18.656758: I tensorflow/contrib/lite/toco/graph_transformations/graph_transformations.cc:39] Before general graph transformations: 17 operators, 27 arrays (0 quantized)
2018-03-27 22:23:18.656837: F tensorflow/contrib/lite/toco/graph_transformations/propagate_fixed_sizes.cc:447] Check failed: matmul_repeats * weights_shape.dims(1) == input_overall_size (0 vs. 2)
İptal edildi

有人知道解决方案吗?

0 个答案:

没有答案