问题:如何将.tflite
(序列化平面缓冲区)转换为.pb
(冻结模型)? documentation仅讨论单向转换。
用例是:我有一个训练有素的模型,可以转换为.tflite
,但不幸的是,我没有该模型的详细信息,并且我想检查一下图表,我该怎么办?
答案 0 :(得分:1)
我不认为有办法将tflite恢复回pb,因为转换后某些信息会丢失。我发现间接了解tflite模型内部的一种方法是回读每个张量。
interpreter = tf.contrib.lite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()
# trial some arbitrary numbers to find out the num of tensors
num_layer = 89
for i in range(num_layer):
detail = interpreter._get_tensor_details(i)
print(i, detail['name'], detail['shape'])
,您将看到类似下面的内容。由于目前仅支持有限的操作,因此对网络体系结构进行反向工程并不是很困难。我也在my Github
上放了一些教程0 MobilenetV1/Logits/AvgPool_1a/AvgPool [ 1 1 1 1024]
1 MobilenetV1/Logits/Conv2d_1c_1x1/BiasAdd [ 1 1 1 1001]
2 MobilenetV1/Logits/Conv2d_1c_1x1/Conv2D_bias [1001]
3 MobilenetV1/Logits/Conv2d_1c_1x1/weights_quant/FakeQuantWithMinMaxVars [1001 1 1 1024]
4 MobilenetV1/Logits/SpatialSqueeze [ 1 1001]
5 MobilenetV1/Logits/SpatialSqueeze_shape [2]
6 MobilenetV1/MobilenetV1/Conv2d_0/Conv2D_Fold_bias [32]
7 MobilenetV1/MobilenetV1/Conv2d_0/Relu6 [ 1 112 112 32]
8 MobilenetV1/MobilenetV1/Conv2d_0/weights_quant/FakeQuantWithMinMaxVars [32 3 3 3]
9 MobilenetV1/MobilenetV1/Conv2d_10_depthwise/Relu6 [ 1 14 14 512]
10 MobilenetV1/MobilenetV1/Conv2d_10_depthwise/depthwise_Fold_bias [512]
11 MobilenetV1/MobilenetV1/Conv2d_10_depthwise/weights_quant/FakeQuantWithMinMaxVars [ 1 3 3 512]
12 MobilenetV1/MobilenetV1/Conv2d_10_pointwise/Conv2D_Fold_bias [512]
13 MobilenetV1/MobilenetV1/Conv2d_10_pointwise/Relu6 [ 1 14 14 512]
14 MobilenetV1/MobilenetV1/Conv2d_10_pointwise/weights_quant/FakeQuantWithMinMaxVars [512 1 1 512]
15 MobilenetV1/MobilenetV1/Conv2d_11_depthwise/Relu6 [ 1 14 14 512]
16 MobilenetV1/MobilenetV1/Conv2d_11_depthwise/depthwise_Fold_bias [512]
17 MobilenetV1/MobilenetV1/Conv2d_11_depthwise/weights_quant/FakeQuantWithMinMaxVars [ 1 3 3 512]
18 MobilenetV1/MobilenetV1/Conv2d_11_pointwise/Conv2D_Fold_bias [512]
19 MobilenetV1/MobilenetV1/Conv2d_11_pointwise/Relu6 [ 1 14 14 512]
20 MobilenetV1/MobilenetV1/Conv2d_11_pointwise/weights_quant/FakeQuantWithMinMaxVars [512 1 1 512]
答案 1 :(得分:0)
我找到了答案here
我们可以使用解释器来分析模型,并且相同的代码如下所示:
import numpy as np
import tensorflow as tf
# Load TFLite model and allocate tensors.
interpreter = tf.lite.Interpreter(model_path="converted_model.tflite")
interpreter.allocate_tensors()
# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Test model on random input data.
input_shape = input_details[0]['shape']
input_data = np.array(np.random.random_sample(input_shape), dtype=np.float32)
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
print(output_data)
Netron是我发现的最好的分析/可视化工具,它可以理解很多格式,包括.tflite
。
答案 2 :(得分:0)
我已使用tf 1.12在TOCO上完成了此操作
tensorflow_1.12/tensorflow/bazel-bin/tensorflow/contrib/lite/toco/toco --
output_file=coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.pb --
output_format=TENSORFLOW_GRAPHDEF --input_format=TFLITE --
input_file=coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.tflite --
inference_type=FLOAT --input_type=FLOAT --input_array="" --output_array="" --
input_shape=1,450,450,3 --dump_grapHviz=./
(您可以删除dump_graphviz选项)