open high low close volume
Ticker date
NAVER 2008-11-28 185724.0 192776.0 177887.0 191993.0 399179.0
2008-12-01 191209.0 191993.0 178671.0 178671.0 258409.0
SAMSUNG 2008-11-28 185724.0 192776.0 177887.0 191993.0 399179.0
2008-12-01 191209.0 191993.0 178671.0 178671.0 258409.0
2008-12-02 156729.0 174753.0 156729.0 169267.0 296473.0
我曾尝试过,
data_dfs.index = data_dfs.index.set_levels([data_dfs.index.levels[:-1], pd.to_datetime(data_dfs.index.levels[-1])])
它有效,但问题是它删除索引名称' Ticker' ....
所以,我尝试data_dfs = data_dfs.rename_axis(['Ticker', 'date'], axis=1)
,但它没有将索引名称设置为' Ticker' ...
我该如何处理?
答案 0 :(得分:1)
我认为您可以将Heroku setup times connections at 55 seconds与参数level=1
一起使用,并将值用于set_levels
:
mux = pd.MultiIndex.from_product([['NAVER'], ['2018-11-28','2018-12-01','2018-12-02']],
names=['Ticker', 'date'])
df = pd.DataFrame({'open':[1,2,3]},
index=mux)
df.index = df.index.set_levels(pd.to_datetime(df.index.get_level_values(1)), level=1)
print(df)
open
Ticker date
NAVER 2018-11-28 1
2018-12-01 2
2018-12-02 3
print(df.index.get_level_values(1))
DatetimeIndex(['2018-11-28', '2018-12-01', '2018-12-02'],
dtype='datetime64[ns]', name='date', freq=None)