我试图在正常分布中返回一个浮点数或一个双精度值,其中在Swift4中,均值= 0,标准偏差= 4。我能得到的最接近的是使用GameplayKit - > GKGaussianDistribution在以下代码中实现:
func generateForecast() {
let gauss = GKGaussianDistribution(randomSource: self.source, mean: 0.0, deviation: 4.0)
self.epsilon = gauss.nextInt()
}
我的问题是我打电话
gauss.nextInt()
我显然得到一个整数。当我尝试
时gauss.nextUniform()
我得到介于-1和1之间的数字。
是否有一种相当简单的方法可以从Swift4中的正态分布返回float或double,而不是在-1和1之间的Int或float?
import AppKit
import PlaygroundSupport
import GameplayKit
let nibFile = NSNib.Name(rawValue:"MyView")
var topLevelObjects : NSArray?
Bundle.main.loadNibNamed(nibFile, owner:nil, topLevelObjects: &topLevelObjects)
let views = (topLevelObjects as! Array<Any>).filter { $0 is NSView }
// Present the view in Playground
PlaygroundPage.current.liveView = views[0] as! NSView
let s = 0.001
var auto_corr: [Int] = []
class Market {
var numAgents: Int
var traders: [Agent] = []
var price: Double
var epsilon: Int
var priceHist: [Double] = []
var returnHist: [Double] = []
var returnRealHist: [Double] = []
var logReturn: Double = 0
var realReturn: Double = 0
let source = GKRandomSource()
init(numAgents: Int, price: Double, epsilon: Int) {
self.numAgents = numAgents
self.price = price
self.epsilon = epsilon
for _ in 1...numAgents {
self.traders.append(Agent(phi: 1, theta: 1))
}
}
func generateForecast() {
let gauss = GKGaussianDistribution(randomSource: self.source, mean: 0.0, deviation: 4.0)
self.epsilon = gauss.nextInt()
}
}
答案 0 :(得分:1)
GKGaussianDistribution
的文档没有提及它会覆盖基类的nextUniform()
,所以不要假设它会为您返回正常分布的值:
您可以使用Box-Muller Transformation:
滚动自己的高斯分布class MyGaussianDistribution {
private let randomSource: GKRandomSource
let mean: Float
let deviation: Float
init(randomSource: GKRandomSource, mean: Float, deviation: Float) {
precondition(deviation >= 0)
self.randomSource = randomSource
self.mean = mean
self.deviation = deviation
}
func nextFloat() -> Float {
guard deviation > 0 else { return mean }
let x1 = randomSource.nextUniform() // a random number between 0 and 1
let x2 = randomSource.nextUniform() // a random number between 0 and 1
let z1 = sqrt(-2 * log(x1)) * cos(2 * Float.pi * x2) // z1 is normally distributed
// Convert z1 from the Standard Normal Distribution to our Normal Distribution
return z1 * deviation + mean
}
}
我故意没有从GKRandomDistribution
继承它,因为我需要覆盖其他方法但与此问题无关。