使用多线程加速Pandas Dataframe创建

时间:2018-03-22 17:17:35

标签: python multithreading pandas bigdata text-analysis

我遇到的问题,似乎没有任何答案,是我需要处理一个非常大的文本文件(来自GUDID的gmdnTerms.txt文件),操纵数据以合并行重复ID,为键值对创建适当的列,并将结果转储到CSV文件。除了实现多线程之外,我已经做了一切我能想到的提高效率的方法。我需要能够多线程迭代文本文件并构建数据帧。多线程教程没有多大帮助。希望有经验的Python程序员能给出明确的答案。以下是整个计划。请帮忙,当前运行时间大于等于20个小时(4.7内核)(16核)和16GB内存以及SSD。

#Assumptions this program makes:
#That duplicate product IDs will immediately follow each other
#That the first line of the text file contains only the keys and no values
#That the data lines are delimited by a "\n" character
#That the individual values are delimited by a "|" character
#The first value in each line will always be a unique product ID
#Each line will have exactly 3 values
#Each line's values will always be in the same order

#Import necessary libraries
import os
import pandas as pd
import mmap
import time

#Time to run
startTime = time.time()

#Parameters of the program
fileLocation = "C:\\Users\User\....\GMDNTest.txt"
outCSVFile = "GMDNTermsProcessed.csv"
encodingCSVFile = "utf-8"

#Sets up variables to be used later on
df = pd.DataFrame()
keys = []
idx = 0
keyNum = 0
firstLine = True
firstValue = True
currentKey = ''

#This loops over each line in text file and collapses lines with duplicate Product IDs while building new columns for appropriate keys and values
#These collapsed lines and new columns are stored in a dataframe
with open (fileLocation, "r+b") as myFile:
    map = mmap.mmap(myFile.fileno(), 0, access=mmap.ACCESS_READ)
    for line in iter(map.readline, ""):

        #Gets keys from first line, splits them, stores in list
        if firstLine == True:
            keyRaw = line.split("|")
            keyRaw = [x.strip() for x in keyRaw]
            keyOne = keyRaw[0]
            firstLine = False

        #All lines after first go through this
        #Collapses lines by comparing the unique ID
        #Stores collapsed KVPs into a dataframe
        else:
            #Appends which number of key we are at to the key and breaks up the values into a list
            keys = [x + "_" + str(keyNum) for x in keyRaw]
            temp = line.split("|")
            temp = [x.strip() for x in temp]

            #If the key is the same as the key on the last line this area is run through
            #If this is the first values line it also goes through here
            if temp[0] == currentKey or firstValue == True:

                #Only first values line hits this part; gets first keys and builds first new columns
                if firstValue == True:
                    currentKey = temp[0]
                    df[keyOne] = ""
                    df.at[idx, keyOne] = temp[0]
                    df[keys[1]] = ""
                    df.at[idx, keys[1]] = temp[1]
                    df[keys[2]] = ""
                    df.at[idx, keys[2]] = temp[2]
                    firstValue = False

                #All other lines with the same key as the last line go through here
                else:
                    headers = list(df.columns.values)
                    if keys[1] in headers:
                        df.at[idx, keys[1]] = temp[1]
                        df.at[idx, keys[2]] = temp[2]
                        else:
                        df[keys[1]] = ""
                        df.at[idx, keys[1]] = temp[1]
                        df[keys[2]] = ""
                        df.at[idx, keys[2]] = temp[2]

            #If the current line has a different key than the last line this part is run through
            #Sets new currentKey and adds values from that line to the dataframe
            else:
                idx+=1
                keyNum = 0
                currentKey = temp[0]
                keys = [x + "_" + str(keyNum) for x in keyRaw]
                df.at[idx, keyOne] = temp[0]
                df.at[idx, keys[1]] = temp[1]
                df.at[idx, keys[2]] = temp[2]

        #Don't forget to increment that keyNum      
        keyNum+=1

#Dumps dataframe of collapsed values to a new CSV file
df.to_csv(outCSVFile, encoding=encodingCSVFile, index=False)

#Show us the approx runtime
print("--- %s seconds ---" % (time.time() - startTime))

1 个答案:

答案 0 :(得分:1)

我无法保证速度更快,但请尝试一下,让我知道它是怎么回事,它可以正确快速地针对您的示例数据运行

import csv
import itertools
import sys

input_filename = sys.argv[1]
output_filename = sys.argv[2]

with open(input_filename, 'r') as input_file, \
     open(output_filename, 'w') as output_file:
    input_reader = csv.reader(input_file, delimiter='|')
    header = next(input_reader)
    header_1_base = header[1]
    header_2_base = header[2]
    header[1] = header_1_base + '_0'
    header[2] = header_2_base + '_0'
    current_max_size = 1
    data = {}
    for line in input_reader:
        line[0] = line[0].strip()
        # line[1] = line[1].strip()
        # line[2] = line[2].strip()
        if line[0] in data:
            data[line[0]].append(line[1:])
            if len(data[line[0]]) > current_max_size:
                current_max_size += 1
                header.append('{0}_{1}'.format(header_1_base, current_max_size - 1))
                header.append('{0}_{1}'.format(header_2_base, current_max_size - 1))
        else:
            data[line[0]] = [line[1:]]

    output_writer = csv.writer(output_file, lineterminator='\n')
    output_writer.writerow(header)
    for id in data:
        output_writer.writerow(itertools.chain([id], itertools.chain(*data[id])))

它没有使用pandas数据帧,因为你的目标似乎是转换为csv格式,而是使用一个简单的python字典。此版本中没有多线程,但如果有必要,可以稍后添加一些。我想你将遇到的最大瓶颈是,如果你的系统内存耗尽并开始交换,那么我们可以通过其他方法来加速它。

更新 - 以上是python3将其转换为python2更改:

output_writer.writerow(itertools.chain([id], itertools.chain(*data[id])))

output_writer.writerow([x for x in itertools.chain([id], itertools.chain(*data[id]))])