我试图用fft过滤一些信号。 我正在处理的信号非常复杂,我在本主题中并没有真正体验过。 这就是为什么我创造了一个3Hz的简单正弦波,并试图切断3 Hz。
到目前为止,很好,import numpy as np
import matplotlib.pyplot as plt
from scipy.fftpack import fftfreq, irfft, rfft
t = np.linspace(0, 2*np.pi, 1000, endpoint=True)
f = 3.0 # Frequency in Hz
A = 100.0 # Amplitude in Unit
s = A * np.sin(2*np.pi*f*t) # Signal
dt = t[1] - t[0] # Sample Time
W = fftfreq(s.size, d=dt)
f_signal = rfft(s)
cut_f_signal = f_signal.copy()
cut_f_signal[(np.abs(W)>3)] = 0 # cut signal above 3Hz
cs = irfft(cut_f_signal)
fig = plt.figure(figsize=(10,5))
plt.plot(s)
plt.plot(cs)
我真的不知道噪音来自哪里。 我认为这是一些基本的东西,但我不明白。 有人可以向我解释一下吗?
修改
更多信息
频率
yf = fft(s)
N = s.size
xf = np.linspace(0, fa/2, N/2, endpoint=True)
fig, ax = plt.subplots()
ax.plot(xf,(2.0/N * np.abs(yf[:N//2])))
plt.xlabel('Frequency ($Hz$)')
plt.ylabel('Amplitude ($Unit$)')
plt.show()
答案 0 :(得分:3)
关于为什么答案的一些额外信息。因为解决方案比你的解决方案更好:
一个。 A的模型在其解决方案中不包含任何非整数频率,滤除较高频率后,结果如下:
1.8691714842589136e-12 * exp(2*pi*n*t*0.0)
1.033507502555532e-12 * exp(2*pi*n*t*1.0)
2.439774536202658e-12 * exp(2*pi*n*t*2.0)
-8.346741339115191e-13 * exp(2*pi*n*t*3.0)
-5.817427588021649e-15 * exp(2*pi*n*t*-3.0)
4.476938066992472e-14 * exp(2*pi*n*t*-2.0)
-3.8680170177940454e-13 * exp(2*pi*n*t*-1.0)
虽然您的解决方案包含以下组件:
...
177.05936105690256 * exp(2*pi*n*t*1.5899578814880346)
339.28717376420747 * exp(2*pi*n*t*1.7489536696368382)
219.76658524130005 * exp(2*pi*n*t*1.9079494577856417)
352.1094590251063 * exp(2*pi*n*t*2.0669452459344453)
267.23939871205346 * exp(2*pi*n*t*2.2259410340832484)
368.3230130593005 * exp(2*pi*n*t*2.384936822232052)
321.0888818355804 * exp(2*pi*n*t*2.5439326103808555)
...
请参考this关于将FFT分档归零的可能副作用的问题。
答案 1 :(得分:2)
您可以更改创建信号的方式并使用采样频率:
fs = 1000
t = np.linspace(0, 1000 / fs, 1000, endpoint=False) # 1000 samples
f = 3.0 # Frequency in Hz
A = 100.0 # Amplitude in Unit
s = A * np.sin(2*np.pi*f*t) # Signal
dt = 1/fs
这里是整个代码:
import numpy as np
import matplotlib.pyplot as plt
from scipy.fftpack import fftfreq, irfft, rfft
fs = 1000
t = np.linspace(0, 1000 / fs, 1000, endpoint=False)
f = 3.0 # Frequency in Hz
A = 100.0 # Amplitude in Unit
s = A * np.sin(2*np.pi*f*t) # Signal
dt = 1/fs
W = fftfreq(s.size, d=dt)
f_signal = rfft(s)
cut_f_signal = f_signal.copy()
cut_f_signal[(np.abs(W)>3)] = 0 # cut signal above 3Hz
cs = irfft(cut_f_signal)
fig = plt.figure(figsize=(10,5))
plt.plot(s)
plt.plot(cs)