我对python和深度学习都很陌生。从其中一个kaggle内核中我看到了以下代码,并且我试图理解这种语法背后的逻辑:
c1 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (s)
c1 = Dropout(0.1) (c1)
c1 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c1)
p1 = MaxPooling2D((2, 2)) (c1)
c2 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (p1)
c2 = Dropout(0.1) (c2)
c2 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c2)
p2 = MaxPooling2D((2, 2)) (c2)
我不理解陈述末尾的(s), (c1), (c2)
......有人可以解释一下这背后的逻辑吗?
答案 0 :(得分:0)
(s),(c1),(c2)是corrrsponding层的输入